論文の概要: GloptiNets: Scalable Non-Convex Optimization with Certificates
- arxiv url: http://arxiv.org/abs/2306.14932v2
- Date: Mon, 23 Oct 2023 07:57:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-25 08:31:15.683303
- Title: GloptiNets: Scalable Non-Convex Optimization with Certificates
- Title(参考訳): GloptiNets: Certificatesによるスケーラブルな非凸最適化
- Authors: Gaspard Beugnot (PSL, DI-ENS), Julien Mairal, Alessandro Rudi (PSL,
DI-ENS)
- Abstract要約: 本稿では,ハイパーキューブやトーラス上のスムーズな関数を扱う証明書を用いた非キューブ最適化手法を提案する。
スペクトルの減衰に固有の対象関数の正則性を活用することにより、正確な証明を取得し、高度で強力なニューラルネットワークを活用することができる。
- 参考スコア(独自算出の注目度): 61.50835040805378
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel approach to non-convex optimization with certificates,
which handles smooth functions on the hypercube or on the torus. Unlike
traditional methods that rely on algebraic properties, our algorithm exploits
the regularity of the target function intrinsic in the decay of its Fourier
spectrum. By defining a tractable family of models, we allow at the same time
to obtain precise certificates and to leverage the advanced and powerful
computational techniques developed to optimize neural networks. In this way the
scalability of our approach is naturally enhanced by parallel computing with
GPUs. Our approach, when applied to the case of polynomials of moderate
dimensions but with thousands of coefficients, outperforms the state-of-the-art
optimization methods with certificates, as the ones based on Lasserre's
hierarchy, addressing problems intractable for the competitors.
- Abstract(参考訳): 本稿では,ハイパーキューブやトーラス上のスムーズな関数を扱う証明書を用いた非凸最適化手法を提案する。
従来の代数的性質に依存する手法とは異なり、このアルゴリズムはフーリエスペクトルの減衰に内在する対象関数の正則性を利用する。
抽出可能なモデルのファミリを定義することにより、正確な認証を取得し、ニューラルネットワークを最適化するために開発された高度な強力な計算技術を活用することができる。
このように、我々のアプローチのスケーラビリティはGPUによる並列コンピューティングによって自然に向上します。
我々のアプローチは、中等次元の多項式に適用されるが、数千の係数を持つ場合、ラッサールの階層に基づく証明による最先端の最適化手法よりも優れ、競合相手にとって難解な問題に対処する。
関連論文リスト
- Randomized Geometric Algebra Methods for Convex Neural Networks [45.318490912354825]
我々はクリフォードの幾何代数にランダム化アルゴリズムを導入し、超複素ベクトル空間にランダム化線形代数を一般化する。
この新しいアプローチは、凸最適化によるグローバル最適性へのニューラルネットワークのトレーニングを含む、機械学習に多くの意味を持つ。
論文 参考訳(メタデータ) (2024-06-04T22:22:39Z) - Learning to optimize with convergence guarantees using nonlinear system theory [0.4143603294943439]
本研究では,スムーズな目的関数に対するアルゴリズムの非制約パラメトリゼーションを提案する。
特に、私たちのフレームワークは自動微分ツールと直接互換性があります。
論文 参考訳(メタデータ) (2024-03-14T13:40:26Z) - Machine Learning Optimized Orthogonal Basis Piecewise Polynomial Approximation [0.9208007322096533]
Piecewise Polynomials (PP) は、軌道計画のようないくつかの工学分野において、点の集合の形で与えられる位置プロファイルを近似するために用いられる。
論文 参考訳(メタデータ) (2024-03-13T14:34:34Z) - The Convex Landscape of Neural Networks: Characterizing Global Optima
and Stationary Points via Lasso Models [75.33431791218302]
ディープニューラルネットワーク(DNN)モデルは、プログラミング目的に使用される。
本稿では,凸型神経回復モデルについて検討する。
定常的非次元目的物はすべて,グローバルサブサンプリング型凸解法プログラムとして特徴付けられることを示す。
また, 静止非次元目的物はすべて, グローバルサブサンプリング型凸解法プログラムとして特徴付けられることを示す。
論文 参考訳(メタデータ) (2023-12-19T23:04:56Z) - Efficient Bound of Lipschitz Constant for Convolutional Layers by Gram
Iteration [122.51142131506639]
循環行列理論を用いて畳み込み層のスペクトルノルムに対して、精密で高速で微分可能な上界を導入する。
提案手法は, 精度, 計算コスト, スケーラビリティの観点から, 他の最先端手法よりも優れていることを示す。
これは畳み込みニューラルネットワークのリプシッツ正則化に非常に効果的であり、並行アプローチに対する競合的な結果である。
論文 参考訳(メタデータ) (2023-05-25T15:32:21Z) - Q-SHED: Distributed Optimization at the Edge via Hessian Eigenvectors
Quantization [5.404315085380945]
ニュートン型(NT)法は、DO問題における堅牢な収束率の実現要因として提唱されている。
インクリメンタルなヘッセン固有ベクトル量子化に基づく新しいビット割り当て方式を特徴とする、DOのための元のNTアルゴリズムであるQ-SHEDを提案する。
Q-SHEDはコンバージェンスに必要な通信ラウンド数を最大60%削減できることを示す。
論文 参考訳(メタデータ) (2023-05-18T10:15:03Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
木アンサンブルはアルゴリズムチューニングやニューラルアーキテクチャ検索といったブラックボックス最適化タスクに適している。
ブラックボックス最適化にツリーアンサンブルを使うことの2つのよく知られた課題は、探索のためのモデル不確実性を効果的に定量化し、また、 (ii) ピースワイドな定値取得関数を最適化することである。
我々のフレームワークは、連続/離散的機能に対する非拘束ブラックボックス最適化のための最先端の手法と同様に、混合変数の特徴空間と既知の入力制約を組み合わせた問題の競合する手法よりも優れている。
論文 参考訳(メタデータ) (2022-07-02T16:59:37Z) - Optimization on manifolds: A symplectic approach [127.54402681305629]
本稿では、最適化問題を解くための一般的な枠組みとして、ディラックの制約付きハミルトン系理論の散逸拡張を提案する。
我々の(加速された)アルゴリズムのクラスは単純で効率的なだけでなく、幅広い文脈にも適用できる。
論文 参考訳(メタデータ) (2021-07-23T13:43:34Z) - Global Optimization of Gaussian processes [52.77024349608834]
少数のデータポイントで学習したガウス過程を訓練した空間定式化を提案する。
このアプローチはまた、より小さく、計算的にもより安価なサブソルバを低いバウンディングに導く。
提案手法の順序の順序による時間収束を,総じて低減する。
論文 参考訳(メタデータ) (2020-05-21T20:59:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。