Deep Transfer Learning for Intelligent Vehicle Perception: a Survey
- URL: http://arxiv.org/abs/2306.15110v2
- Date: Fri, 29 Sep 2023 21:26:01 GMT
- Title: Deep Transfer Learning for Intelligent Vehicle Perception: a Survey
- Authors: Xinyu Liu, Jinlong Li, Jin Ma, Huiming Sun, Zhigang Xu, Tianyun Zhang,
Hongkai Yu
- Abstract summary: This paper represents the first comprehensive survey on the topic of the deep transfer learning for intelligent vehicle perception.
Deep transfer learning aims to improve task performance in a new domain by leveraging the knowledge of similar tasks learned in another domain before.
- Score: 42.860260505671036
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning-based intelligent vehicle perception has been developing
prominently in recent years to provide a reliable source for motion planning
and decision making in autonomous driving. A large number of powerful deep
learning-based methods can achieve excellent performance in solving various
perception problems of autonomous driving. However, these deep learning methods
still have several limitations, for example, the assumption that lab-training
(source domain) and real-testing (target domain) data follow the same feature
distribution may not be practical in the real world. There is often a dramatic
domain gap between them in many real-world cases. As a solution to this
challenge, deep transfer learning can handle situations excellently by
transferring the knowledge from one domain to another. Deep transfer learning
aims to improve task performance in a new domain by leveraging the knowledge of
similar tasks learned in another domain before. Nevertheless, there are
currently no survey papers on the topic of deep transfer learning for
intelligent vehicle perception. To the best of our knowledge, this paper
represents the first comprehensive survey on the topic of the deep transfer
learning for intelligent vehicle perception. This paper discusses the domain
gaps related to the differences of sensor, data, and model for the intelligent
vehicle perception. The recent applications, challenges, future researches in
intelligent vehicle perception are also explored.
Related papers
- Towards Knowledge-driven Autonomous Driving [37.003908817857095]
This paper explores the emerging knowledge-driven autonomous driving technologies.
Our investigation highlights the limitations of current autonomous driving systems.
Knowledge-driven methods with the abilities of cognition, generalization and life-long learning emerge as a promising way to overcome these challenges.
arXiv Detail & Related papers (2023-12-07T14:17:17Z) - LLM4Drive: A Survey of Large Language Models for Autonomous Driving [62.10344445241105]
Large language models (LLMs) have demonstrated abilities including understanding context, logical reasoning, and generating answers.
In this paper, we systematically review a research line about textitLarge Language Models for Autonomous Driving (LLM4AD).
arXiv Detail & Related papers (2023-11-02T07:23:33Z) - End-to-end Autonomous Driving using Deep Learning: A Systematic Review [0.0]
End-to-end autonomous driving is a fully differentiable machine learning system that takes raw sensor input data and other metadata as prior information and directly outputs the ego vehicle's control signals or planned trajectories.
This paper attempts to systematically review all recent Machine Learning-based techniques to perform this end-to-end task, including, but not limited to, object detection, semantic scene understanding, object tracking, trajectory predictions, trajectory planning, vehicle control, social behavior, and communications.
arXiv Detail & Related papers (2023-08-27T17:43:58Z) - Recent Advancements in End-to-End Autonomous Driving using Deep
Learning: A Survey [9.385936248154987]
End-to-End driving is a promising paradigm as it circumvents the drawbacks associated with modular systems.
Recent developments in End-to-End autonomous driving are analyzed, and research is categorized based on underlying principles.
This paper assesses the state-of-the-art, identifies challenges, and explores future possibilities.
arXiv Detail & Related papers (2023-07-10T07:00:06Z) - Data and Knowledge for Overtaking Scenarios in Autonomous Driving [0.0]
The overtaking maneuver is one of the most critical actions of driving.
Despite the amount of work available in the literature, just a few handle overtaking maneuvers.
This work contributes in this area by presenting a new synthetic dataset whose focus is the overtaking maneuver.
arXiv Detail & Related papers (2023-05-30T21:27:05Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
This paper examines the role of imitation learning in bridging the gap between control strategies and realistic limitations in communication and sensing.
We show that imitation learning can succeed in deriving policies that, if adopted by 5% of vehicles, may boost the energy-efficiency of networks with varying traffic conditions by 15% using only local observations.
arXiv Detail & Related papers (2022-06-28T17:08:31Z) - Transferability in Deep Learning: A Survey [80.67296873915176]
The ability to acquire and reuse knowledge is known as transferability in deep learning.
We present this survey to connect different isolated areas in deep learning with their relation to transferability.
We implement a benchmark and an open-source library, enabling a fair evaluation of deep learning methods in terms of transferability.
arXiv Detail & Related papers (2022-01-15T15:03:17Z) - Improving Robustness of Learning-based Autonomous Steering Using
Adversarial Images [58.287120077778205]
We introduce a framework for analyzing robustness of the learning algorithm w.r.t varying quality in the image input for autonomous driving.
Using the results of sensitivity analysis, we propose an algorithm to improve the overall performance of the task of "learning to steer"
arXiv Detail & Related papers (2021-02-26T02:08:07Z) - Knowledge as Invariance -- History and Perspectives of
Knowledge-augmented Machine Learning [69.99522650448213]
Research in machine learning is at a turning point.
Research interests are shifting away from increasing the performance of highly parameterized models to exceedingly specific tasks.
This white paper provides an introduction and discussion of this emerging field in machine learning research.
arXiv Detail & Related papers (2020-12-21T15:07:19Z) - Autonomous Driving with Deep Learning: A Survey of State-of-Art
Technologies [12.775642557933908]
This is a survey of autonomous driving technologies with deep learning methods.
We investigate the major fields of self-driving systems, such as perception, mapping and localization, prediction, planning and control, simulation, V2X and safety etc.
arXiv Detail & Related papers (2020-06-10T22:21:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.