Identifying and Consolidating Knowledge Engineering Requirements
- URL: http://arxiv.org/abs/2306.15124v1
- Date: Tue, 27 Jun 2023 00:26:15 GMT
- Title: Identifying and Consolidating Knowledge Engineering Requirements
- Authors: Bradley P. Allen and Filip Ilievski and Saurav Joshi
- Abstract summary: We propose to address four challenges by developing a reference architecture using a mainstream software methodology.
By studying the requirements of different stakeholders and eras, we identify 23 essential quality attributes for evaluating reference architectures.
We discuss the next steps towards a comprehensive reference architecture including prioritizing quality attributes, integrating components with complementary strengths, and supporting missing socio-technical requirements.
- Score: 4.311189028205597
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Knowledge engineering is the process of creating and maintaining
knowledge-producing systems. Throughout the history of computer science and AI,
knowledge engineering workflows have been widely used because high-quality
knowledge is assumed to be crucial for reliable intelligent agents. However,
the landscape of knowledge engineering has changed, presenting four challenges:
unaddressed stakeholder requirements, mismatched technologies, adoption
barriers for new organizations, and misalignment with software engineering
practices. In this paper, we propose to address these challenges by developing
a reference architecture using a mainstream software methodology. By studying
the requirements of different stakeholders and eras, we identify 23 essential
quality attributes for evaluating reference architectures. We assess three
candidate architectures from recent literature based on these attributes.
Finally, we discuss the next steps towards a comprehensive reference
architecture, including prioritizing quality attributes, integrating components
with complementary strengths, and supporting missing socio-technical
requirements. As this endeavor requires a collaborative effort, we invite all
knowledge engineering researchers and practitioners to join us.
Related papers
- Abstraction Engineering [6.091612632147657]
Abstraction is already used across many disciplines involved in software development.
This paper looks at these new challenges and proposes to address them through the lens of Abstraction.
We discuss the foundations of Abstraction Engineering, identify key challenges, highlight the research questions that help address these challenges, and create a roadmap for future research.
arXiv Detail & Related papers (2024-08-26T07:56:32Z) - Standardizing Knowledge Engineering Practices with a Reference Architecture [8.22187358555391]
This paper proposes a vision of harmonizing the best practices in the field of knowledge engineering.
We describe how a reference architecture can be iteratively designed and implemented to associate user needs with recurring systemic patterns.
arXiv Detail & Related papers (2024-04-04T17:46:32Z) - Beyond Factuality: A Comprehensive Evaluation of Large Language Models
as Knowledge Generators [78.63553017938911]
Large language models (LLMs) outperform information retrieval techniques for downstream knowledge-intensive tasks.
However, community concerns abound regarding the factuality and potential implications of using this uncensored knowledge.
We introduce CONNER, designed to evaluate generated knowledge from six important perspectives.
arXiv Detail & Related papers (2023-10-11T08:22:37Z) - Architecture Knowledge Representation and Communication Industry Survey [0.0]
We aim to understand the current practice in architecture knowledge, and to explore where sustainability can be applied to address sustainability in software architecture in the future.
We used a survey, which utilized a questionnaire containing 34 questions and collected responses from 45 architects working at a prominent bank in the Netherlands.
arXiv Detail & Related papers (2023-09-20T18:17:16Z) - Hierarchical Empowerment: Towards Tractable Empowerment-Based Skill
Learning [65.41865750258775]
General purpose agents will require large repertoires of skills.
We introduce a new framework, Hierarchical Empowerment, that makes computing empowerment more tractable.
In a popular ant navigation domain, our four level agents are able to learn skills that cover a surface area over two orders of magnitude larger than prior work.
arXiv Detail & Related papers (2023-07-06T02:27:05Z) - Machine Unlearning: A Survey [56.79152190680552]
A special need has arisen where, due to privacy, usability, and/or the right to be forgotten, information about some specific samples needs to be removed from a model, called machine unlearning.
This emerging technology has drawn significant interest from both academics and industry due to its innovation and practicality.
No study has analyzed this complex topic or compared the feasibility of existing unlearning solutions in different kinds of scenarios.
The survey concludes by highlighting some of the outstanding issues with unlearning techniques, along with some feasible directions for new research opportunities.
arXiv Detail & Related papers (2023-06-06T10:18:36Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
We propose a novel approach to enable Model-Driven Software Engineering and Model-Driven AI Engineering.
In particular, we support Automated ML, thus assisting software engineers without deep AI knowledge in developing AI-intensive systems.
arXiv Detail & Related papers (2022-03-06T10:12:56Z) - Contextualized Knowledge-aware Attentive Neural Network: Enhancing
Answer Selection with Knowledge [77.77684299758494]
We extensively investigate approaches to enhancing the answer selection model with external knowledge from knowledge graph (KG)
First, we present a context-knowledge interaction learning framework, Knowledge-aware Neural Network (KNN), which learns the QA sentence representations by considering a tight interaction with the external knowledge from KG and the textual information.
To handle the diversity and complexity of KG information, we propose a Contextualized Knowledge-aware Attentive Neural Network (CKANN), which improves the knowledge representation learning with structure information via a customized Graph Convolutional Network (GCN) and comprehensively learns context-based and knowledge-based sentence representation via
arXiv Detail & Related papers (2021-04-12T05:52:20Z) - Engineering an Intelligent Essay Scoring and Feedback System: An
Experience Report [1.5168188294440734]
We describe an exploratory system for assessing the quality of essays supplied by customers of a specialized recruitment support service.
The problem domain is challenging because the open-ended customer-supplied source text has considerable scope for ambiguity and error.
There is also a need to incorporate specialized business domain knowledge into the intelligent processing systems.
arXiv Detail & Related papers (2021-03-25T03:46:05Z) - Towards an Interface Description Template for AI-enabled Systems [77.34726150561087]
Reuse is a common system architecture approach that seeks to instantiate a system architecture with existing components.
There is currently no framework that guides the selection of necessary information to assess their portability to operate in a system different than the one for which the component was originally purposed.
We present ongoing work on establishing an interface description template that captures the main information of an AI-enabled component.
arXiv Detail & Related papers (2020-07-13T20:30:26Z) - Synergizing Domain Expertise with Self-Awareness in Software Systems: A
Patternized Architecture Guideline [11.155059219430207]
This paper highlights the importance of synergizing domain expertise and the self-awareness to enable better self-adaptation in software systems.
We present a holistic framework of notions, enriched patterns and methodology, dubbed DBASES, that offers a principled guideline for the engineers.
arXiv Detail & Related papers (2020-01-20T12:17:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.