Standardizing Knowledge Engineering Practices with a Reference Architecture
- URL: http://arxiv.org/abs/2404.03624v1
- Date: Thu, 4 Apr 2024 17:46:32 GMT
- Title: Standardizing Knowledge Engineering Practices with a Reference Architecture
- Authors: Bradley P. Allen, Filip Ilievski,
- Abstract summary: This paper proposes a vision of harmonizing the best practices in the field of knowledge engineering.
We describe how a reference architecture can be iteratively designed and implemented to associate user needs with recurring systemic patterns.
- Score: 8.22187358555391
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Knowledge engineering is the process of creating and maintaining knowledge-producing systems. Throughout the history of computer science and AI, knowledge engineering workflows have been widely used given the importance of high-quality knowledge for reliable intelligent agents. Meanwhile, the scope of knowledge engineering, as apparent from its target tasks and use cases, has been shifting, together with its paradigms such as expert systems, semantic web, and language modeling. The intended use cases and supported user requirements between these paradigms have not been analyzed globally, as new paradigms often satisfy prior pain points while possibly introducing new ones. The recent abstraction of systemic patterns into a boxology provides an opening for aligning the requirements and use cases of knowledge engineering with the systems, components, and software that can satisfy them best. This paper proposes a vision of harmonizing the best practices in the field of knowledge engineering by leveraging the software engineering methodology of creating reference architectures. We describe how a reference architecture can be iteratively designed and implemented to associate user needs with recurring systemic patterns, building on top of existing knowledge engineering workflows and boxologies. We provide a six-step roadmap that can enable the development of such an architecture, providing an initial design and outcome of the definition of architectural scope, selection of information sources, and analysis. We expect that following through on this vision will lead to well-grounded reference architectures for knowledge engineering, will advance the ongoing initiatives of organizing the neurosymbolic knowledge engineering space, and will build new links to the software architectures and data science communities.
Related papers
- Procedure Model for Building Knowledge Graphs for Industry Applications [0.0]
The graph-based integration of previously unconnected information with domain knowledge provides new insights.
This paper presents a practical step-by-step procedure model for building an RDF knowledge graph.
arXiv Detail & Related papers (2024-09-20T11:46:37Z) - Abstraction Engineering [6.091612632147657]
Abstraction is already used across many disciplines involved in software development.
This paper looks at these new challenges and proposes to address them through the lens of Abstraction.
We discuss the foundations of Abstraction Engineering, identify key challenges, highlight the research questions that help address these challenges, and create a roadmap for future research.
arXiv Detail & Related papers (2024-08-26T07:56:32Z) - Charting a Path to Efficient Onboarding: The Role of Software
Visualization [49.1574468325115]
The present study aims to explore the familiarity of managers, leaders, and developers with software visualization tools.
This approach incorporated quantitative and qualitative analyses of data collected from practitioners using questionnaires and semi-structured interviews.
arXiv Detail & Related papers (2024-01-17T21:30:45Z) - Architecture Knowledge Representation and Communication Industry Survey [0.0]
We aim to understand the current practice in architecture knowledge, and to explore where sustainability can be applied to address sustainability in software architecture in the future.
We used a survey, which utilized a questionnaire containing 34 questions and collected responses from 45 architects working at a prominent bank in the Netherlands.
arXiv Detail & Related papers (2023-09-20T18:17:16Z) - Machine Learning-Enabled Software and System Architecture Frameworks [48.87872564630711]
The stakeholders with data science and Machine Learning related concerns, such as data scientists and data engineers, are yet to be included in existing architecture frameworks.
We surveyed 61 subject matter experts from over 25 organizations in 10 countries.
arXiv Detail & Related papers (2023-08-09T21:54:34Z) - Identifying and Consolidating Knowledge Engineering Requirements [4.311189028205597]
We propose to address four challenges by developing a reference architecture using a mainstream software methodology.
By studying the requirements of different stakeholders and eras, we identify 23 essential quality attributes for evaluating reference architectures.
We discuss the next steps towards a comprehensive reference architecture including prioritizing quality attributes, integrating components with complementary strengths, and supporting missing socio-technical requirements.
arXiv Detail & Related papers (2023-06-27T00:26:15Z) - UNTER: A Unified Knowledge Interface for Enhancing Pre-trained Language
Models [100.4659557650775]
We propose a UNified knowledge inTERface, UNTER, to provide a unified perspective to exploit both structured knowledge and unstructured knowledge.
With both forms of knowledge injected, UNTER gains continuous improvements on a series of knowledge-driven NLP tasks.
arXiv Detail & Related papers (2023-05-02T17:33:28Z) - Recommender Systems for Configuration Knowledge Engineering [55.41644538483948]
We show how recommender systems can support knowledge base development and maintenance processes.
We report the results of empirical studies which show the importance of user-centered configuration knowledge organization.
arXiv Detail & Related papers (2021-02-16T12:29:54Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
Development and deployment of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
We have developed a proven systems engineering approach for machine learning development and deployment.
Our "Machine Learning Technology Readiness Levels" framework defines a principled process to ensure robust, reliable, and responsible systems.
arXiv Detail & Related papers (2021-01-11T15:54:48Z) - Towards an Interface Description Template for AI-enabled Systems [77.34726150561087]
Reuse is a common system architecture approach that seeks to instantiate a system architecture with existing components.
There is currently no framework that guides the selection of necessary information to assess their portability to operate in a system different than the one for which the component was originally purposed.
We present ongoing work on establishing an interface description template that captures the main information of an AI-enabled component.
arXiv Detail & Related papers (2020-07-13T20:30:26Z) - Synergizing Domain Expertise with Self-Awareness in Software Systems: A
Patternized Architecture Guideline [11.155059219430207]
This paper highlights the importance of synergizing domain expertise and the self-awareness to enable better self-adaptation in software systems.
We present a holistic framework of notions, enriched patterns and methodology, dubbed DBASES, that offers a principled guideline for the engineers.
arXiv Detail & Related papers (2020-01-20T12:17:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.