Generalized Out-of-distribution Fault Diagnosis (GOOFD) via Internal Contrastive Learning
- URL: http://arxiv.org/abs/2306.15266v2
- Date: Thu, 10 Oct 2024 15:35:52 GMT
- Title: Generalized Out-of-distribution Fault Diagnosis (GOOFD) via Internal Contrastive Learning
- Authors: Xingyue Wang, Hanrong Zhang, Xinlong Qiao, Ke Ma, Shuting Tao, Peng Peng, Hongwei Wang,
- Abstract summary: We propose a Generalized Out-of-distribution Fault Diagnosis framework to integrate diagnosis subtasks.
A unified fault diagnosis method based on internal contrastive learning and Mahalanobis distance is put forward to underpin the proposed framework.
Our proposed method can be applied to multiple faults diagnosis tasks and achieve better performance than the existing single-task methods.
- Score: 8.583116999933731
- License:
- Abstract: Fault diagnosis is crucial in monitoring machines within industrial processes. With the increasing complexity of working conditions and demand for safety during production, diverse diagnosis methods are required, and an integrated fault diagnosis system capable of handling multiple tasks is highly desired. However, the diagnosis subtasks are often studied separately, and the current methods still need improvement for such a generalized system. To address this issue, we propose the Generalized Out-of-distribution Fault Diagnosis (GOOFD) framework to integrate diagnosis subtasks. Additionally, a unified fault diagnosis method based on internal contrastive learning and Mahalanobis distance is put forward to underpin the proposed generalized framework. The method involves feature extraction through internal contrastive learning and outlier recognition based on the Mahalanobis distance. Our proposed method can be applied to multiple faults diagnosis tasks and achieve better performance than the existing single-task methods. Experiments are conducted on benchmark and practical process datasets, indicating the effectiveness of the proposed framework.
Related papers
- TVDiag: A Task-oriented and View-invariant Failure Diagnosis Framework with Multimodal Data [11.373761837547852]
Microservice-based systems often suffer from reliability issues due to their intricate interactions and expanding scale.
Traditional failure diagnosis methods that use single-modal data can hardly cover all failure scenarios due to the restricted information.
We propose textitTVDiag, a multimodal failure diagnosis framework for locating culprit microservice instances and identifying their failure types.
arXiv Detail & Related papers (2024-07-29T05:26:57Z) - Diagnosis driven Anomaly Detection for CPS [44.97616703648182]
We propose a method for utilizing deep learning-based anomaly detection to generate inputs for Consistency-Based Diagnosis (CBD)
We evaluate our approach on a simulated and a real-world CPS dataset, where our model demonstrates strong performance relative to other state-of-the-art models.
arXiv Detail & Related papers (2023-11-27T15:34:40Z) - A Foundational Framework and Methodology for Personalized Early and
Timely Diagnosis [84.6348989654916]
We propose the first foundational framework for early and timely diagnosis.
It builds on decision-theoretic approaches to outline the diagnosis process.
It integrates machine learning and statistical methodology for estimating the optimal personalized diagnostic path.
arXiv Detail & Related papers (2023-11-26T14:42:31Z) - A Sparse Bayesian Learning for Diagnosis of Nonstationary and Spatially
Correlated Faults with Application to Multistation Assembly Systems [3.4991031406102238]
This article proposes a novel fault diagnosis method: clustering spatially correlated sparse Bayesian learning (CSSBL)
The proposed method's efficacy is provided through numerical and real-world case studies utilizing an actual autobody assembly system.
The generalizability of the proposed method allows the technique to be applied in fault diagnosis in other domains, including communication and healthcare systems.
arXiv Detail & Related papers (2023-10-20T23:56:53Z) - An Evidential Real-Time Multi-Mode Fault Diagnosis Approach Based on
Broad Learning System [26.733033919978364]
We propose a novel approach to achieve real-time multi-mode fault diagnosis in industrial systems.
Our approach uses an extended evidence reasoning (ER) algorithm to fuse information and merge outputs from different base classifiers.
The effectiveness of the proposed approach is demonstrated on the multi-mode Tennessee Eastman process dataset.
arXiv Detail & Related papers (2023-04-29T04:42:44Z) - Machine learning-based approach for online fault Diagnosis of Discrete
Event System [0.0]
The problem is the online diagnosis of Automated Production Systems with sensors and actuators delivering discrete binary signals.
We propose a Machine Learning-based approach of a diagnostic system.
arXiv Detail & Related papers (2022-10-24T08:56:13Z) - On-board Fault Diagnosis of a Laboratory Mini SR-30 Gas Turbine Engine [54.650189434544146]
A data-driven fault diagnosis and isolation scheme is explicitly developed for failure in the fuel supply system and sensor measurements.
A model is trained using machine learning classifiers to detect a given set of fault scenarios in real-time on which it is trained.
Several simulation studies were carried out to demonstrate and illustrate the proposed fault diagnosis scheme's advantages, capabilities, and performance.
arXiv Detail & Related papers (2021-10-17T13:42:37Z) - Probabilistic Bearing Fault Diagnosis Using Gaussian Process with
Tailored Feature Extraction [10.064000794573756]
Rolling bearings are subject to various faults due to its long-time operation under harsh environment.
Current deep learning methods perform the bearing fault diagnosis in the form of deterministic classification.
We develop a probabilistic fault diagnosis framework that can account for the uncertainty effect in prediction.
arXiv Detail & Related papers (2021-09-19T18:34:29Z) - Anytime Diagnosis for Reconfiguration [52.77024349608834]
We introduce and analyze FlexDiag which is an anytime direct diagnosis approach.
We evaluate the algorithm with regard to performance and diagnosis quality using a configuration benchmark from the domain of feature models and an industrial configuration knowledge base from the automotive domain.
arXiv Detail & Related papers (2021-02-19T11:45:52Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making.
We propose a novel framework to combine the inheritance-guided hierarchical assignment and co-occurrence graph propagation for clinical automatic diagnosis.
arXiv Detail & Related papers (2021-01-27T13:16:51Z) - NADS: Neural Architecture Distribution Search for Uncertainty Awareness [79.18710225716791]
Machine learning (ML) systems often encounter Out-of-Distribution (OoD) errors when dealing with testing data coming from a distribution different from training data.
Existing OoD detection approaches are prone to errors and even sometimes assign higher likelihoods to OoD samples.
We propose Neural Architecture Distribution Search (NADS) to identify common building blocks among all uncertainty-aware architectures.
arXiv Detail & Related papers (2020-06-11T17:39:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.