Machine learning-based approach for online fault Diagnosis of Discrete
Event System
- URL: http://arxiv.org/abs/2210.13466v1
- Date: Mon, 24 Oct 2022 08:56:13 GMT
- Title: Machine learning-based approach for online fault Diagnosis of Discrete
Event System
- Authors: R Saddem (CRESTIC), D Baptiste
- Abstract summary: The problem is the online diagnosis of Automated Production Systems with sensors and actuators delivering discrete binary signals.
We propose a Machine Learning-based approach of a diagnostic system.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The problem considered in this paper is the online diagnosis of Automated
Production Systems with sensors and actuators delivering discrete binary
signals that can be modeled as Discrete Event Systems. Even though there are
numerous diagnosis methods, none of them can meet all the criteria of
implementing an efficient diagnosis system (such as an intelligent solution, an
average effort, a reasonable cost, an online diagnosis, fewer false alarms,
etc.). In addition, these techniques require either a correct, robust, and
representative model of the system or relevant data or experts' knowledge that
require continuous updates. In this paper, we propose a Machine Learning-based
approach of a diagnostic system. It is considered as a multi-class classifier
that predicts the plant state: normal or faulty and what fault that has arisen
in the case of failing behavior.
Related papers
- A Sparse Bayesian Learning for Diagnosis of Nonstationary and Spatially
Correlated Faults with Application to Multistation Assembly Systems [3.4991031406102238]
This article proposes a novel fault diagnosis method: clustering spatially correlated sparse Bayesian learning (CSSBL)
The proposed method's efficacy is provided through numerical and real-world case studies utilizing an actual autobody assembly system.
The generalizability of the proposed method allows the technique to be applied in fault diagnosis in other domains, including communication and healthcare systems.
arXiv Detail & Related papers (2023-10-20T23:56:53Z) - Don't Treat the Symptom, Find the Cause! Efficient
Artificial-Intelligence Methods for (Interactive) Debugging [0.0]
In the modern world, we are permanently using, leveraging, interacting with, and relying upon systems of ever higher sophistication.
In this thesis, we will give an introduction to the topic of model-based diagnosis, point out the major challenges in the field, and discuss a selection of approaches from our research addressing these issues.
arXiv Detail & Related papers (2023-06-22T12:44:49Z) - An Evidential Real-Time Multi-Mode Fault Diagnosis Approach Based on
Broad Learning System [26.733033919978364]
We propose a novel approach to achieve real-time multi-mode fault diagnosis in industrial systems.
Our approach uses an extended evidence reasoning (ER) algorithm to fuse information and merge outputs from different base classifiers.
The effectiveness of the proposed approach is demonstrated on the multi-mode Tennessee Eastman process dataset.
arXiv Detail & Related papers (2023-04-29T04:42:44Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
Anomaly detection plays a fundamental role in various applications.
It is challenging for existing methods to handle the scenarios where the instances are systems whose characteristics are not readily observed as data.
We develop an end-to-end approach which includes an encoder-decoder module that learns system embeddings.
arXiv Detail & Related papers (2023-04-21T02:20:24Z) - Learning From High-Dimensional Cyber-Physical Data Streams for
Diagnosing Faults in Smart Grids [4.616703548353371]
Fault diagnosis in cyber-physical power systems is affected by data quality.
These systems generate massive amounts of data that overburden the system with excessive computational costs.
This paper presents the effect of feature engineering on mitigating the aforementioned challenges.
arXiv Detail & Related papers (2023-03-15T01:21:50Z) - NeuralSympCheck: A Symptom Checking and Disease Diagnostic Neural Model
with Logic Regularization [59.15047491202254]
symptom checking systems inquire users for their symptoms and perform a rapid and affordable medical assessment of their condition.
We propose a new approach based on the supervised learning of neural models with logic regularization.
Our experiments show that the proposed approach outperforms the best existing methods in the accuracy of diagnosis when the number of diagnoses and symptoms is large.
arXiv Detail & Related papers (2022-06-02T07:57:17Z) - On-board Fault Diagnosis of a Laboratory Mini SR-30 Gas Turbine Engine [54.650189434544146]
A data-driven fault diagnosis and isolation scheme is explicitly developed for failure in the fuel supply system and sensor measurements.
A model is trained using machine learning classifiers to detect a given set of fault scenarios in real-time on which it is trained.
Several simulation studies were carried out to demonstrate and illustrate the proposed fault diagnosis scheme's advantages, capabilities, and performance.
arXiv Detail & Related papers (2021-10-17T13:42:37Z) - Anytime Diagnosis for Reconfiguration [52.77024349608834]
We introduce and analyze FlexDiag which is an anytime direct diagnosis approach.
We evaluate the algorithm with regard to performance and diagnosis quality using a configuration benchmark from the domain of feature models and an industrial configuration knowledge base from the automotive domain.
arXiv Detail & Related papers (2021-02-19T11:45:52Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making.
We propose a novel framework to combine the inheritance-guided hierarchical assignment and co-occurrence graph propagation for clinical automatic diagnosis.
arXiv Detail & Related papers (2021-01-27T13:16:51Z) - Residual Generation Using Physically-Based Grey-Box Recurrent Neural
Networks For Engine Fault Diagnosis [1.0152838128195467]
Hybrid fault diagnosis methods combining physically-based models and available training data have shown promising results.
An automated residual design is developed using a bipartite graph representation of the system model to design grey-box recurrent neural networks.
Data from an internal combustion engine test bench is used to illustrate the potentials of combining machine learning and model-based fault diagnosis techniques.
arXiv Detail & Related papers (2020-08-11T11:59:48Z) - Hierarchical Reinforcement Learning for Automatic Disease Diagnosis [52.111516253474285]
We propose to integrate a hierarchical policy structure of two levels into the dialogue systemfor policy learning.
The proposed policy structure is capable to deal with diagnosis problem including large number of diseases and symptoms.
arXiv Detail & Related papers (2020-04-29T15:02:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.