Synthesis of Quantum Vector Databases Based on Grovers Algorithm
- URL: http://arxiv.org/abs/2306.15295v2
- Date: Wed, 4 Oct 2023 21:04:51 GMT
- Title: Synthesis of Quantum Vector Databases Based on Grovers Algorithm
- Authors: Cesar Borisovich Pronin, Andrey Vladimirovich Ostroukh
- Abstract summary: This paper describes a method for using Grovers algorithm to create a quantum vector database.
The database stores embeddings based on Controlled-S gates, which represent a binary numerical value.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper describes a method for using Grovers algorithm to create a quantum
vector database, the database stores embeddings based on Controlled-S gates,
which represent a binary numerical value. This value represents the embeddings
value. The process of creating meaningful embeddings is handled by a classical
computer and the search process is handled by the quantum computer. This search
approach might be beneficial for a large enough database, or it could be seen
as a very qubit-efficient (super dense) way for storing data on a quantum
computer, since the proposed circuit stores many embeddings inside one quantum
register simultaneously.
Related papers
- Supervised binary classification of small-scale digits images with a trapped-ion quantum processor [56.089799129458875]
We show that a quantum processor can correctly solve the basic classification task considered.
With the increase of the capabilities quantum processors, they can become a useful tool for machine learning.
arXiv Detail & Related papers (2024-06-17T18:20:51Z) - Realization of quantum algorithms with qudits [0.7892577704654171]
We review several ideas indicating how multilevel quantum systems, also known as qudits, can be used for efficient realization of quantum algorithms.
We focus on techniques of leveraging qudits for simplifying decomposition of multiqubit gates, and for compressing quantum information by encoding multiple qubits in a single qudit.
These theoretical schemes can be implemented with quantum computing platforms of various nature, such as trapped ions, neutral atoms, superconducting junctions, and quantum light.
arXiv Detail & Related papers (2023-11-20T18:34:19Z) - Quantum algorithm for finding minimum values in a Quantum Random Access
Memory [0.0]
The optimal classical deterministic algorithm can find the minimum value with a time complexity that grows linearly with the number of elements in the database.
We propose a quantum algorithm for finding the minimum value of a database, which is quadratically faster than its best classical analogs.
arXiv Detail & Related papers (2023-01-12T16:22:17Z) - Iterative Qubits Management for Quantum Index Searching in a Hybrid
System [56.39703478198019]
IQuCS aims at index searching and counting in a quantum-classical hybrid system.
We implement IQuCS with Qiskit and conduct intensive experiments.
Results demonstrate that it reduces qubits consumption by up to 66.2%.
arXiv Detail & Related papers (2022-09-22T21:54:28Z) - A Scalable 5,6-Qubit Grover's Quantum Search Algorithm [0.0]
Grover's quantum search algorithm is one of the well-known applications of quantum computing.
In this paper, a scalable Quantum Grover Search algorithm is introduced and implemented using 5-qubit and 6-qubit quantum circuits.
The accuracy of the proposed 5-qubit and 6-qubit circuits is benchmarked against the state-of-the-art implementations for 3-qubit and 4-qubit.
arXiv Detail & Related papers (2022-04-30T00:35:54Z) - Compact quantum kernel-based binary classifier [2.0684234025249717]
We present the simplest quantum circuit for constructing a kernel-based binary classifier.
The number of qubits is reduced by two and the number of steps is reduced linearly.
Our design also provides a straightforward way to handle an imbalanced data set.
arXiv Detail & Related papers (2022-02-04T14:30:53Z) - A quantum processor based on coherent transport of entangled atom arrays [44.62475518267084]
We show a quantum processor with dynamic, nonlocal connectivity, in which entangled qubits are coherently transported in a highly parallel manner.
We use this architecture to realize programmable generation of entangled graph states such as cluster states and a 7-qubit Steane code state.
arXiv Detail & Related papers (2021-12-07T19:00:00Z) - Benchmarking Small-Scale Quantum Devices on Computing Graph Edit
Distance [52.77024349608834]
Graph Edit Distance (GED) measures the degree of (dis)similarity between two graphs in terms of the operations needed to make them identical.
In this paper we present a comparative study of two quantum approaches to computing GED.
arXiv Detail & Related papers (2021-11-19T12:35:26Z) - Synthesis of Quantum Circuits with an Island Genetic Algorithm [44.99833362998488]
Given a unitary matrix that performs certain operation, obtaining the equivalent quantum circuit is a non-trivial task.
Three problems are explored: the coin for the quantum walker, the Toffoli gate and the Fredkin gate.
The algorithm proposed proved to be efficient in decomposition of quantum circuits, and as a generic approach, it is limited only by the available computational power.
arXiv Detail & Related papers (2021-06-06T13:15:25Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z) - Compiling single-qubit braiding gate for Fibonacci anyons topological
quantum computation [0.0]
Topological quantum computation is an implementation of a quantum computer in a way that radically reduces decoherence.
Topological qubits are encoded in the topological evolution of two-dimensional quasi-particles called anyons.
arXiv Detail & Related papers (2020-08-08T15:34:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.