Herb-Drug Interactions: A Holistic Decision Support System in Healthcare
- URL: http://arxiv.org/abs/2306.15365v1
- Date: Tue, 27 Jun 2023 10:30:51 GMT
- Title: Herb-Drug Interactions: A Holistic Decision Support System in Healthcare
- Authors: Andreia Martins, Eva Maia, Isabel Pra\c{c}a
- Abstract summary: An original and hybrid decision support system was designed to identify herb-drug interactions.
Different machine learning models will be used to strengthen the typical rules engine used in these cases.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Complementary and alternative medicine are commonly used concomitantly with
conventional medications leading to adverse drug reactions and even fatality in
some cases. Furthermore, the vast possibility of herb-drug interactions
prevents health professionals from remembering or manually searching them in a
database. Decision support systems are a powerful tool that can be used to
assist clinicians in making diagnostic and therapeutic decisions in patient
care. Therefore, an original and hybrid decision support system was designed to
identify herb-drug interactions, applying artificial intelligence techniques to
identify new possible interactions. Different machine learning models will be
used to strengthen the typical rules engine used in these cases. Thus, using
the proposed system, the pharmacy community, people's first line of contact
within the Healthcare System, will be able to make better and more accurate
therapeutic decisions and mitigate possible adverse events.
Related papers
- DrugAgent: Explainable Drug Repurposing Agent with Large Language Model-based Reasoning [10.528489471229946]
We propose a multi-agent framework to enhance the drug repurposing process using state-of-the-art machine learning techniques and knowledge integration.
Our framework comprises several specialized agents: an AI Agent trains robust drug-target interaction (DTI) models; a Knowledge Graph Agent utilizes the drug-gene interaction database (DGIdb) to systematically extract DTIs.
By integrating outputs from these agents, our system effectively harnesses diverse data sources, including external databases, to propose viable repurposing candidates.
arXiv Detail & Related papers (2024-08-23T21:24:59Z) - Leave No Patient Behind: Enhancing Medication Recommendation for Rare Disease Patients [47.68396964741116]
We propose a novel model called Robust and Accurate REcommendations for Medication (RAREMed) to enhance accuracy for rare diseases.
It employs a transformer encoder with a unified input sequence approach to capture complex relationships among disease and procedure codes.
It provides accurate drug sets for both rare and common disease patients, thereby mitigating unfairness in medication recommendation systems.
arXiv Detail & Related papers (2024-03-26T14:36:22Z) - ABiMed: An intelligent and visual clinical decision support system for
medication reviews and polypharmacy management [3.843569766201585]
The aim of ABiMed is to design an innovative clinical decision support system for medication reviews and polypharmacy management.
ABiMed associates several approaches: guidelines implementation, but the automatic extraction of patient data from the GP's electronic health record and its transfer to the pharmacist, and the visual presentation of contextualized drug knowledge using visual analytics.
arXiv Detail & Related papers (2023-12-13T11:06:45Z) - Emerging Drug Interaction Prediction Enabled by Flow-based Graph Neural
Network with Biomedical Network [69.16939798838159]
We propose EmerGNN, a graph neural network (GNN) that can effectively predict interactions for emerging drugs.
EmerGNN learns pairwise representations of drugs by extracting the paths between drug pairs, propagating information from one drug to the other, and incorporating the relevant biomedical concepts on the paths.
Overall, EmerGNN has higher accuracy than existing approaches in predicting interactions for emerging drugs and can identify the most relevant information on the biomedical network.
arXiv Detail & Related papers (2023-11-15T06:34:00Z) - Clinical Decision Support System for Unani Medicine Practitioners [0.0]
The proposed system provides a web-based interface to enter the patient's symptoms, which are then automatically analyzed by our system to generate a list of probable diseases.
The system allows practitioners to choose the most likely disease and inform patients about the associated treatment options remotely.
arXiv Detail & Related papers (2023-10-24T13:49:18Z) - Decision Support System for Chronic Diseases Based on Drug-Drug
Interactions [67.9840225237587]
This paper presents a Decision Support System, called DSSDDI, based on drug-drug interactions to support doctors prescribing decisions.
The DDI module learns safer and more effective drug representations from the drug-drug interactions.
The MD module considers the representations of patients and drugs as context, DDI and patients' similarity as treatment, and medication use as outcome.
arXiv Detail & Related papers (2023-03-04T12:44:38Z) - AMFPMC -- An improved method of detecting multiple types of drug-drug
interactions using only known drug-drug interactions [18.027128141189355]
Adverse drug interactions are largely preventable causes of medical accidents.
The detection of drug interactions in a lab, prior to a drug's use in medical practice, is essential.
Machine learning techniques can provide an efficient and accurate means of predicting possible drug-drug interactions.
arXiv Detail & Related papers (2023-02-07T09:57:54Z) - RECOMED: A Comprehensive Pharmaceutical Recommendation System [8.681590862953623]
A pharmaceutical recommendation system was designed based on the patients and drugs features extracted from Drugs.com and Druglib.com.
To the best of our knowledge, we are the first group to consider patients conditions and history in the proposed approach for selecting a specific medicine appropriate for that particular user.
arXiv Detail & Related papers (2022-12-31T20:04:31Z) - Knowledge-Driven New Drug Recommendation [88.35607943144261]
We develop a drug-dependent multi-phenotype few-shot learner to bridge the gap between existing and new drugs.
EDGE eliminates the false-negative supervision signal using an external drug-disease knowledge base.
Results show that EDGE achieves 7.3% improvement on the ROC-AUC score over the best baseline.
arXiv Detail & Related papers (2022-10-11T16:07:52Z) - Conditional Generation Net for Medication Recommendation [73.09366442098339]
Medication recommendation targets to provide a proper set of medicines according to patients' diagnoses, which is a critical task in clinics.
We propose Conditional Generation Net (COGNet) which introduces a novel copy-or-predict mechanism to generate the set of medicines.
We validate the proposed model on the public MIMIC data set, and the experimental results show that the proposed model can outperform state-of-the-art approaches.
arXiv Detail & Related papers (2022-02-14T10:16:41Z) - The Medkit-Learn(ing) Environment: Medical Decision Modelling through
Simulation [81.72197368690031]
We present a new benchmarking suite designed specifically for medical sequential decision making.
The Medkit-Learn(ing) Environment is a publicly available Python package providing simple and easy access to high-fidelity synthetic medical data.
arXiv Detail & Related papers (2021-06-08T10:38:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.