RECOMED: A Comprehensive Pharmaceutical Recommendation System
- URL: http://arxiv.org/abs/2301.00280v2
- Date: Mon, 21 Aug 2023 05:46:48 GMT
- Title: RECOMED: A Comprehensive Pharmaceutical Recommendation System
- Authors: Mariam Zomorodi, Ismail Ghodsollahee, Jennifer H. Martin, Nicholas J.
Talley, Vahid Salari, Pawel Plawiak, Kazem Rahimi, U. Rajendra Acharya
- Abstract summary: A pharmaceutical recommendation system was designed based on the patients and drugs features extracted from Drugs.com and Druglib.com.
To the best of our knowledge, we are the first group to consider patients conditions and history in the proposed approach for selecting a specific medicine appropriate for that particular user.
- Score: 8.681590862953623
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A comprehensive pharmaceutical recommendation system was designed based on
the patients and drugs features extracted from Drugs.com and Druglib.com.
First, data from these databases were combined, and a dataset of patients and
drug information was built. Secondly, the patients and drugs were clustered,
and then the recommendation was performed using different ratings provided by
patients, and importantly by the knowledge obtained from patients and drug
specifications, and considering drug interactions. To the best of our
knowledge, we are the first group to consider patients conditions and history
in the proposed approach for selecting a specific medicine appropriate for that
particular user. Our approach applies artificial intelligence (AI) models for
the implementation. Sentiment analysis using natural language processing
approaches is employed in pre-processing along with neural network-based
methods and recommender system algorithms for modeling the system. In our work,
patients conditions and drugs features are used for making two models based on
matrix factorization. Then we used drug interaction to filter drugs with severe
or mild interactions with other drugs. We developed a deep learning model for
recommending drugs by using data from 2304 patients as a training set, and then
we used data from 660 patients as our validation set. After that, we used
knowledge from critical information about drugs and combined the outcome of the
model into a knowledge-based system with the rules obtained from constraints on
taking medicine.
Related papers
- Leave No Patient Behind: Enhancing Medication Recommendation for Rare Disease Patients [47.68396964741116]
We propose a novel model called Robust and Accurate REcommendations for Medication (RAREMed) to enhance accuracy for rare diseases.
It employs a transformer encoder with a unified input sequence approach to capture complex relationships among disease and procedure codes.
It provides accurate drug sets for both rare and common disease patients, thereby mitigating unfairness in medication recommendation systems.
arXiv Detail & Related papers (2024-03-26T14:36:22Z) - NeuroCADR: Drug Repurposing to Reveal Novel Anti-Epileptic Drug
Candidates Through an Integrated Computational Approach [0.0]
Drug repurposing is an emerging approach for drug discovery involving the reassignment of existing drugs for novel purposes.
A proposed algorithm is NeuroCADR, a novel system for drug repurposing via a multi-pronged approach consisting of k-nearest neighbor algorithms (KNN), random forest classification, and decision trees.
Data was sourced from several databases consisting of interactions between diseases, symptoms, genes, and affiliated drug molecules, which were then compiled into datasets expressed in binary.
NeuroCADR identified novel drug candidates for epilepsy that can be further approved through clinical trials.
arXiv Detail & Related papers (2023-09-04T03:21:43Z) - A clustering and graph deep learning-based framework for COVID-19 drug
repurposing [0.3359875577705538]
This study presents a novel unsupervised machine learning framework that utilizes a graph-based autoencoder for multi-feature type clustering on heterogeneous drug data.
The dataset consists of 438 drugs, of which 224 are under clinical trials for COVID-19.
Our framework relies on reported drug data, including its pharmacological properties, chemical/physical properties, interaction with the host, and efficacy in different publicly available COVID-19 assays.
arXiv Detail & Related papers (2023-06-24T15:00:47Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
Drug combination therapy is a well-established strategy for disease treatment with better effectiveness and less safety degradation.
Deep learning models have emerged as an efficient way to discover synergistic combinations.
Our framework achieves state-of-the-art results in comparison with other deep learning-based methods.
arXiv Detail & Related papers (2023-01-14T15:07:43Z) - Neural Bandits for Data Mining: Searching for Dangerous Polypharmacy [63.135687276599114]
Some polypharmacies, deemed inappropriate, may be associated with adverse health outcomes such as death or hospitalization.
We propose the OptimNeuralTS strategy to efficiently mine claims datasets and build a predictive model of the association between drug combinations and health outcomes.
Our method can detect up to 72% of PIPs while maintaining an average precision score of 99% using 30 000 time steps.
arXiv Detail & Related papers (2022-12-10T03:43:23Z) - Knowledge-Driven New Drug Recommendation [88.35607943144261]
We develop a drug-dependent multi-phenotype few-shot learner to bridge the gap between existing and new drugs.
EDGE eliminates the false-negative supervision signal using an external drug-disease knowledge base.
Results show that EDGE achieves 7.3% improvement on the ROC-AUC score over the best baseline.
arXiv Detail & Related papers (2022-10-11T16:07:52Z) - Deep learning for drug repurposing: methods, databases, and applications [54.08583498324774]
Repurposing existing drugs for new therapies is an attractive solution that accelerates drug development at reduced experimental costs.
In this review, we introduce guidelines on how to utilize deep learning methodologies and tools for drug repurposing.
arXiv Detail & Related papers (2022-02-08T09:42:08Z) - Extracting Adverse Drug Events from Clinical Notes [1.6244541005112747]
Adverse drug events (ADEs) are unexpected incidents caused by the administration of a drug or medication.
This paper explores the relationship between a drug and its associated attributes using relation extraction techniques.
arXiv Detail & Related papers (2021-04-21T23:10:20Z) - PREMIER: Personalized REcommendation for Medical prescrIptions from
Electronic Records [8.365167718547296]
We design a two-stage attention-based personalized medication recommender system called PREMIER.
Our system takes into account the interactions among drugs in order to minimize the adverse effects for the patient.
Experiment results on MIMIC-III and a proprietary outpatient dataset show that PREMIER outperforms state-of-the-art medication recommendation systems.
arXiv Detail & Related papers (2020-08-28T04:48:32Z) - Learning-based Computer-aided Prescription Model for Parkinson's
Disease: A Data-driven Perspective [61.70045118068213]
We build a dataset by collecting symptoms of PD patients, and their prescription drug provided by neurologists.
Then, we build a novel computer-aided prescription model by learning the relation between observed symptoms and prescription drug.
For the new coming patients, we could recommend (predict) suitable prescription drug on their observed symptoms by our prescription model.
arXiv Detail & Related papers (2020-07-31T14:34:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.