論文の概要: Requirements for Explainability and Acceptance of Artificial
Intelligence in Collaborative Work
- arxiv url: http://arxiv.org/abs/2306.15394v1
- Date: Tue, 27 Jun 2023 11:36:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-28 13:43:28.191627
- Title: Requirements for Explainability and Acceptance of Artificial
Intelligence in Collaborative Work
- Title(参考訳): 協調作業における人工知能の説明可能性と受容
- Authors: Sabine Theis, Sophie Jentzsch, Fotini Deligiannaki, Charles Berro,
Arne Peter Raulf, Carmen Bruder
- Abstract要約: 本稿では,AIの説明可能性と受容の要件について考察する。
その結果,2つの主要なグループが,モデルの内部操作に関する情報を必要とする開発者であることが示唆された。
AIシステムの受容は、システムの機能や性能、プライバシ、倫理的考慮事項に関する情報に依存する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing prevalence of Artificial Intelligence (AI) in safety-critical
contexts such as air-traffic control leads to systems that are practical and
efficient, and to some extent explainable to humans to be trusted and accepted.
The present structured literature analysis examines n = 236 articles on the
requirements for the explainability and acceptance of AI. Results include a
comprehensive review of n = 48 articles on information people need to perceive
an AI as explainable, the information needed to accept an AI, and
representation and interaction methods promoting trust in an AI. Results
indicate that the two main groups of users are developers who require
information about the internal operations of the model and end users who
require information about AI results or behavior. Users' information needs vary
in specificity, complexity, and urgency and must consider context, domain
knowledge, and the user's cognitive resources. The acceptance of AI systems
depends on information about the system's functions and performance, privacy
and ethical considerations, as well as goal-supporting information tailored to
individual preferences and information to establish trust in the system.
Information about the system's limitations and potential failures can increase
acceptance and trust. Trusted interaction methods are human-like, including
natural language, speech, text, and visual representations such as graphs,
charts, and animations. Our results have significant implications for future
human-centric AI systems being developed. Thus, they are suitable as input for
further application-specific investigations of user needs.
- Abstract(参考訳): 航空交通管制のような安全クリティカルな文脈における人工知能(AI)の普及は、実用的で効率的なシステムをもたらし、ある程度人間に信頼と受け入れが可能である。
本稿では,aiの説明可能性と受容の要件について,n = 236の論文を考察する。
結果には、AIを説明可能なものとして知覚するために必要な情報、AIを受け入れるために必要な情報、AIへの信頼を促進する表現と相互作用の方法に関するn = 48の記事の包括的なレビューが含まれている。
その結果,モデルの内部操作に関する情報を必要とする開発者と,AI結果や行動に関する情報を必要とするエンドユーザの2つの主要なグループが示唆された。
ユーザの情報のニーズは特異性、複雑さ、緊急性によって異なり、コンテキスト、ドメイン知識、ユーザの認知リソースを考慮する必要がある。
aiシステムの受容は、システムの機能とパフォーマンス、プライバシと倫理的配慮に関する情報と、システムの信頼を確立するための個人の選好と情報に合わせた目標支援情報に依存する。
システムの制限や潜在的な失敗に関する情報は、受け入れと信頼を高めることができる。
信頼された相互作用法は、自然言語、スピーチ、テキスト、グラフ、チャート、アニメーションなどの視覚表現を含む人間に似たものである。
我々の結果は、将来の人間中心AIシステムに重大な影響を及ぼす。
したがって、ユーザニーズのさらなるアプリケーション固有の調査のインプットとして適しています。
関連論文リスト
- Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
人間中心のアプローチでAIアプリケーションを開発する必要性には、ある程度のコンセンサスがある。
i)ユーティリティと社会的善、(ii)プライバシとデータ所有、(iii)透明性と説明責任、(iv)AIによる意思決定プロセスの公正性。
異種情報ソースに基づく現在のマルチモーダルアルゴリズムは、データ中の機密要素や内部バイアスによってどのように影響を受けるかを検討する。
論文 参考訳(メタデータ) (2023-02-13T16:44:44Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
論文 参考訳(メタデータ) (2022-12-08T23:23:39Z) - Adaptive cognitive fit: Artificial intelligence augmented management of
information facets and representations [62.997667081978825]
ビッグデータ技術と人工知能(AI)応用の爆発的な成長は、情報ファセットの普及に繋がった。
等角性や正確性などの情報フェートは、情報に対する人間の認識を支配的かつ著しく左右する。
認知の限界を克服するために情報表現を適応できる人工知能技術が必要であることを示唆する。
論文 参考訳(メタデータ) (2022-04-25T02:47:25Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - An Objective Metric for Explainable AI: How and Why to Estimate the
Degree of Explainability [3.04585143845864]
本稿では, 客観的手法を用いて, 正しい情報のeX説明可能性の度合いを測定するための, モデルに依存しない新しい指標を提案する。
私たちは、医療とファイナンスのための2つの現実的なAIベースのシステムについて、いくつかの実験とユーザースタディを設計しました。
論文 参考訳(メタデータ) (2021-09-11T17:44:13Z) - Knowledge-intensive Language Understanding for Explainable AI [9.541228711585886]
AIが主導する意思決定の仕方と、どの決定要因が含まれているかを理解することが不可欠である。
意思決定に直接関係する人間中心の説明を持つことは重要である。
人間が理解し、使用する明示的なドメイン知識を巻き込む必要がある。
論文 参考訳(メタデータ) (2021-08-02T21:12:30Z) - Trustworthy AI [75.99046162669997]
入力データの小さな敵対的変化への脆さ、決定の説明能力、トレーニングデータのバイアスに対処する能力は、最も顕著な制限である。
我々は,AIシステムに対するユーザおよび公的な信頼を高める上での6つの重要な問題に対処するために,信頼に値するAIに関するチュートリアルを提案する。
論文 参考訳(メタデータ) (2020-11-02T20:04:18Z) - The role of explainability in creating trustworthy artificial
intelligence for health care: a comprehensive survey of the terminology,
design choices, and evaluation strategies [1.2762298148425795]
透明性の欠如は、医療におけるAIシステムの実装における主要な障壁の1つとして認識されている。
我々は最近の文献をレビューし、説明可能なAIシステムの設計について研究者や実践者にガイダンスを提供する。
我々は、説明可能なモデリングが信頼できるAIに貢献できると結論づけるが、説明可能性の利点は実際に証明する必要がある。
論文 参考訳(メタデータ) (2020-07-31T09:08:27Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z) - AAAI FSS-19: Human-Centered AI: Trustworthiness of AI Models and Data
Proceedings [8.445274192818825]
予測モデルは不確実性を認識し、信頼できる予測をもたらすことが不可欠である。
このシンポジウムの焦点は、データ品質と技術的堅牢性と安全性を改善するAIシステムであった。
広く定義された領域からの提出はまた、説明可能なモデル、人間の信頼、AIの倫理的側面といった要求に対処するアプローチについても論じた。
論文 参考訳(メタデータ) (2020-01-15T15:30:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。