論文の概要: Toward Mesh-Invariant 3D Generative Deep Learning with Geometric
Measures
- arxiv url: http://arxiv.org/abs/2306.15762v1
- Date: Tue, 27 Jun 2023 19:27:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-29 16:54:56.943942
- Title: Toward Mesh-Invariant 3D Generative Deep Learning with Geometric
Measures
- Title(参考訳): 幾何測度を用いたメッシュ不変3次元生成深層学習に向けて
- Authors: Thomas Besnier, Sylvain Arguill\`ere, Emery Pierson, Mohamed Daoudi
- Abstract要約: 幾何学的データの取得を可能にする技術が開発されているため、3次元生成モデリングは加速している。
多くの生成学習アルゴリズムは、予測された形状と対象形状を比較する際に、各点間の対応を必要とする。
トレーニングフェーズにおいても,異なるパラメータ化に対処可能なアーキテクチャを提案する。
- 参考スコア(独自算出の注目度): 2.167843405313757
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: 3D generative modeling is accelerating as the technology allowing the capture
of geometric data is developing. However, the acquired data is often
inconsistent, resulting in unregistered meshes or point clouds. Many generative
learning algorithms require correspondence between each point when comparing
the predicted shape and the target shape. We propose an architecture able to
cope with different parameterizations, even during the training phase. In
particular, our loss function is built upon a kernel-based metric over a
representation of meshes using geometric measures such as currents and
varifolds. The latter allows to implement an efficient dissimilarity measure
with many desirable properties such as robustness to resampling of the mesh or
point cloud. We demonstrate the efficiency and resilience of our model with a
generative learning task of human faces.
- Abstract(参考訳): 幾何学的データの取得を可能にする技術が開発されているため、3次元生成モデリングは加速している。
しかし、取得したデータはしばしば一貫性がなく、未登録のメッシュやポイントクラウドが発生する。
多くの生成学習アルゴリズムは予測された形状と対象形状を比較する際に各点間の対応を必要とする。
トレーニングフェーズにおいても,異なるパラメータ化に対応可能なアーキテクチャを提案する。
特に、損失関数は、電流や多様体のような幾何学的測度を用いてメッシュの表現上のカーネルベースの計量の上に構築される。
後者は、メッシュやポイントクラウドの再サンプリングに対する堅牢性など、多くの望ましい特性を持つ効率的な異種性尺度を実装することができる。
我々は,人間の顔の創発的学習タスクを用いて,モデルの効率とレジリエンスを実証する。
関連論文リスト
- Geometry Distributions [51.4061133324376]
本稿では,分布として幾何学をモデル化する新しい幾何学的データ表現を提案する。
提案手法では,新しいネットワークアーキテクチャを用いた拡散モデルを用いて表面点分布の学習を行う。
本研究では,多種多様な対象に対して質的かつ定量的に表現を評価し,その有効性を実証した。
論文 参考訳(メタデータ) (2024-11-25T04:06:48Z) - Masked Generative Extractor for Synergistic Representation and 3D Generation of Point Clouds [6.69660410213287]
我々は,3次元表現学習と生成学習を深く統合する利点を探るため,Point-MGEと呼ばれる革新的なフレームワークを提案する。
形状分類において、Point-MGEはModelNet40データセットで94.2%(+1.0%)、ScanObjectNNデータセットで92.9%(+5.5%)の精度を達成した。
また,非条件条件と条件条件条件条件の両方で,Point-MGEが高品質な3D形状を生成可能であることを確認した。
論文 参考訳(メタデータ) (2024-06-25T07:57:03Z) - Robust 3D Tracking with Quality-Aware Shape Completion [67.9748164949519]
そこで本研究では,高密度および完全点の雲からなる合成対象表現について,ロバストな3次元追跡のための形状完備化により正確に表現する。
具体的には, 形状が整ったボキセル化3次元追跡フレームワークを設計し, ノイズのある歴史的予測の悪影響を軽減するために, 品質に配慮した形状完備化機構を提案する。
論文 参考訳(メタデータ) (2023-12-17T04:50:24Z) - Automatic Parameterization for Aerodynamic Shape Optimization via Deep
Geometric Learning [60.69217130006758]
空力形状最適化のための形状パラメータ化を完全に自動化する2つの深層学習モデルを提案する。
どちらのモデルも、深い幾何学的学習を通じてパラメータ化し、人間の事前知識を学習された幾何学的パターンに埋め込むように最適化されている。
2次元翼の形状最適化実験を行い、2つのモデルに適用可能なシナリオについて論じる。
論文 参考訳(メタデータ) (2023-05-03T13:45:40Z) - GNPM: Geometric-Aware Neural Parametric Models [6.620111952225635]
本研究では,データの局所的構造を考慮し,ゆがんだ形状を学習し,4次元力学の潜在空間を呈する学習パラメトリックモデルを提案する。
我々は、人間の様々なデータセット上でGNPMを評価し、訓練中に高密度の通信を必要とする最先端の手法に匹敵する性能を発揮することを示す。
論文 参考訳(メタデータ) (2022-09-21T19:23:31Z) - Scene Synthesis via Uncertainty-Driven Attribute Synchronization [52.31834816911887]
本稿では,3次元シーンの多様な特徴パターンを捉えるニューラルシーン合成手法を提案する。
提案手法は,ニューラルネットワークと従来のシーン合成手法の双方の長所を結合する。
論文 参考訳(メタデータ) (2021-08-30T19:45:07Z) - GLASS: Geometric Latent Augmentation for Shape Spaces [28.533018136138825]
幾何学的に動機づけられたエネルギーを用いて拡張し、その結果、サンプル(トレーニング)モデルのスパースコレクションを増強する。
本研究では,高剛性(ARAP)エネルギーのヘシアン解析を行い,その基礎となる(局所)形状空間に投射する。
我々は,3~10個のトレーニング形状から始めても,興味深い,意味のある形状変化の例をいくつか提示する。
論文 参考訳(メタデータ) (2021-08-06T17:56:23Z) - DEF: Deep Estimation of Sharp Geometric Features in 3D Shapes [43.853000396885626]
サンプル3次元形状のシャープな幾何学的特徴を予測するための学習ベースフレームワークを提案する。
個々のパッチの結果を融合させることで、既存のデータ駆動方式では処理できない大きな3Dモデルを処理できる。
論文 参考訳(メタデータ) (2020-11-30T18:21:00Z) - Primal-Dual Mesh Convolutional Neural Networks [62.165239866312334]
本稿では,グラフ・ニューラル・ネットワークの文献からトライアングル・メッシュへ引き起こされた原始双対のフレームワークを提案する。
提案手法は,3次元メッシュのエッジと顔の両方を入力として特徴付け,動的に集約する。
メッシュ単純化の文献から得られたツールを用いて、我々のアプローチに関する理論的知見を提供する。
論文 参考訳(メタデータ) (2020-10-23T14:49:02Z) - Pix2Surf: Learning Parametric 3D Surface Models of Objects from Images [64.53227129573293]
1つ以上の視点から見れば、新しいオブジェクトの3次元パラメトリック表面表現を学習する際の課題について検討する。
ビュー間で一貫した高品質なパラメトリックな3次元表面を生成できるニューラルネットワークを設計する。
提案手法は,共通対象カテゴリからの形状の公開データセットに基づいて,教師と訓練を行う。
論文 参考訳(メタデータ) (2020-08-18T06:33:40Z) - PolyGen: An Autoregressive Generative Model of 3D Meshes [22.860421649320287]
本稿では,Transformerベースのアーキテクチャを用いてメッシュを直接モデル化するアプローチを提案する。
我々のモデルは、オブジェクトクラス、ボクセル、イメージなど、様々な入力を条件にすることができる。
このモデルでは、高品質で使い勝手の良いメッシュを生成でき、メッシュモデリングタスクのためのログライクなベンチマークを確立することができる。
論文 参考訳(メタデータ) (2020-02-23T17:16:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。