A Cascaded Approach for ultraly High Performance Lesion Detection and
False Positive Removal in Liver CT Scans
- URL: http://arxiv.org/abs/2306.16036v1
- Date: Wed, 28 Jun 2023 09:11:34 GMT
- Title: A Cascaded Approach for ultraly High Performance Lesion Detection and
False Positive Removal in Liver CT Scans
- Authors: Fakai Wang, Chi-Tung Cheng, Chien-Wei Peng, Ke Yan, Min Wu, Le Lu,
Chien-Hung Liao, and Ling Zhang
- Abstract summary: Liver cancer has high morbidity and mortality rates in the world.
Automatically detecting and classifying liver lesions in CT images have the potential to improve the clinical workflow.
In this work, we customize a multi-object labeling tool for multi-phase CT images.
- Score: 15.352636778576171
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Liver cancer has high morbidity and mortality rates in the world. Multi-phase
CT is a main medical imaging modality for detecting/identifying and diagnosing
liver tumors. Automatically detecting and classifying liver lesions in CT
images have the potential to improve the clinical workflow. This task remains
challenging due to liver lesions' large variations in size, appearance, image
contrast, and the complexities of tumor types or subtypes. In this work, we
customize a multi-object labeling tool for multi-phase CT images, which is used
to curate a large-scale dataset containing 1,631 patients with four-phase CT
images, multi-organ masks, and multi-lesion (six major types of liver lesions
confirmed by pathology) masks. We develop a two-stage liver lesion detection
pipeline, where the high-sensitivity detecting algorithms in the first stage
discover as many lesion proposals as possible, and the lesion-reclassification
algorithms in the second stage remove as many false alarms as possible. The
multi-sensitivity lesion detection algorithm maximizes the information
utilization of the individual probability maps of segmentation, and the
lesion-shuffle augmentation effectively explores the texture contrast between
lesions and the liver. Independently tested on 331 patient cases, the proposed
model achieves high sensitivity and specificity for malignancy classification
in the multi-phase contrast-enhanced CT (99.2%, 97.1%, diagnosis setting) and
in the noncontrast CT (97.3%, 95.7%, screening setting).
Related papers
- Liver Tumor Screening and Diagnosis in CT with Pixel-Lesion-Patient
Network [37.931408083443074]
Pixel-Lesion-pAtient Network (PLAN) is proposed to jointly segment and classify each lesion with improved anchor queries and a foreground-enhanced sampling loss.
PLAN achieves 95% and 96% in patient-level sensitivity and specificity.
On contrast-enhanced CT, our lesion-level detection precision, recall, and classification accuracy are 92%, 89%, and 86%, outperforming widely used CNN and transformers for lesion segmentation.
arXiv Detail & Related papers (2023-07-17T06:21:45Z) - Texture Characterization of Histopathologic Images Using Ecological
Diversity Measures and Discrete Wavelet Transform [82.53597363161228]
This paper proposes a method for characterizing texture across histopathologic images with a considerable success rate.
It is possible to quantify the intrinsic properties of such images with promising accuracy on two HI datasets.
arXiv Detail & Related papers (2022-02-27T02:19:09Z) - Robust Weakly Supervised Learning for COVID-19 Recognition Using
Multi-Center CT Images [8.207602203708799]
coronavirus disease 2019 (i.e., COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
Due to various technical specifications of CT scanners located in different hospitals, the appearance of CT images can be significantly different leading to the failure of many automated image recognition approaches.
We propose a COVID-19 CT scan recognition model namely coronavirus information fusion and diagnosis network (CIFD-Net)
Our model can resolve the problem of different appearance in CT scan images reliably and efficiently while attaining higher accuracy compared to other state-of-the-art methods.
arXiv Detail & Related papers (2021-12-09T15:22:03Z) - Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images [65.1629311281062]
We consider machine-learning-based malignancy prediction and lesion identification from clinical dermatological images.
We first identify all lesions present in the image regardless of sub-type or likelihood of malignancy, then it estimates their likelihood of malignancy, and through aggregation, it also generates an image-level likelihood of malignancy.
arXiv Detail & Related papers (2021-04-02T20:52:05Z) - Multi-Slice Low-Rank Tensor Decomposition Based Multi-Atlas
Segmentation: Application to Automatic Pathological Liver CT Segmentation [4.262342157729123]
Liver segmentation from abdominal CT images is an essential step for liver cancer computer-aided diagnosis and surgical planning.
Currently, the accuracy and robustness of existing liver segmentation methods cannot meet the requirements of clinical applications.
We propose a novel low-rank tensor decomposition (LRTD) based multi-atlas segmentation (MAS) framework that achieves accurate and robust pathological liver segmentation of CT images.
arXiv Detail & Related papers (2021-02-24T04:09:39Z) - M3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia
Screening from CT Imaging [85.00066186644466]
We propose a Multi-task Multi-slice Deep Learning System (M3Lung-Sys) for multi-class lung pneumonia screening from CT imaging.
In addition to distinguish COVID-19 from Healthy, H1N1, and CAP cases, our M 3 Lung-Sys also be able to locate the areas of relevant lesions.
arXiv Detail & Related papers (2020-10-07T06:22:24Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
We demonstrate the feasibility of in-vivo tumor type classification using hyperspectral imaging and deep learning.
Our best model achieves an AUC of 76.3%, significantly outperforming previous conventional and deep learning methods.
arXiv Detail & Related papers (2020-07-02T12:00:53Z) - Harvesting, Detecting, and Characterizing Liver Lesions from Large-scale
Multi-phase CT Data via Deep Dynamic Texture Learning [24.633802585888812]
We propose a fully-automated and multi-stage liver tumor characterization framework for dynamic contrast computed tomography (CT)
Our system comprises four sequential processes of tumor proposal detection, tumor harvesting, primary tumor site selection, and deep texture-based tumor characterization.
arXiv Detail & Related papers (2020-06-28T19:55:34Z) - Co-Heterogeneous and Adaptive Segmentation from Multi-Source and
Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion
Segmentation [48.504790189796836]
We present a novel segmentation strategy, co-heterogenous and adaptive segmentation (CHASe)
We propose a versatile framework that fuses appearance based semi-supervision, mask based adversarial domain adaptation, and pseudo-labeling.
CHASe can further improve pathological liver mask Dice-Sorensen coefficients by ranges of $4.2% sim 9.4%$.
arXiv Detail & Related papers (2020-05-27T06:58:39Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
We propose a synergistic learning framework for automated severity assessment of COVID-19 in 3D CT images.
A multi-task deep network (called M$2$UNet) is then developed to assess the severity of COVID-19 patients.
Our M$2$UNet consists of a patch-level encoder, a segmentation sub-network for lung lobe segmentation, and a classification sub-network for severity assessment.
arXiv Detail & Related papers (2020-05-08T03:16:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.