Benchmarking Zero-Shot Recognition with Vision-Language Models: Challenges on Granularity and Specificity
- URL: http://arxiv.org/abs/2306.16048v3
- Date: Tue, 18 Jun 2024 07:12:47 GMT
- Title: Benchmarking Zero-Shot Recognition with Vision-Language Models: Challenges on Granularity and Specificity
- Authors: Zhenlin Xu, Yi Zhu, Tiffany Deng, Abhay Mittal, Yanbei Chen, Manchen Wang, Paolo Favaro, Joseph Tighe, Davide Modolo,
- Abstract summary: This paper presents novel benchmarks for evaluating vision-language models (VLMs) in zero-shot recognition.
Our benchmarks test VLMs' consistency in understanding concepts across semantic granularity levels and their response to varying text specificity.
Findings show that VLMs favor moderately fine-grained concepts and struggle with specificity, often misjudging texts that differ from their training data.
- Score: 45.86789047206224
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents novel benchmarks for evaluating vision-language models (VLMs) in zero-shot recognition, focusing on granularity and specificity. Although VLMs excel in tasks like image captioning, they face challenges in open-world settings. Our benchmarks test VLMs' consistency in understanding concepts across semantic granularity levels and their response to varying text specificity. Findings show that VLMs favor moderately fine-grained concepts and struggle with specificity, often misjudging texts that differ from their training data. Extensive evaluations reveal limitations in current VLMs, particularly in distinguishing between correct and subtly incorrect descriptions. While fine-tuning offers some improvements, it doesn't fully address these issues, highlighting the need for VLMs with enhanced generalization capabilities for real-world applications. This study provides insights into VLM limitations and suggests directions for developing more robust models.
Related papers
- AutoBench-V: Can Large Vision-Language Models Benchmark Themselves? [55.14033256706175]
Large Vision-Language Models (LVLMs) have become essential for advancing the integration of visual and linguistic information.
We introduce AutoBench-V, an automated framework for serving evaluation on demand.
Through an extensive evaluation of seven popular LVLMs across five demanded user inputs, the framework shows effectiveness and reliability.
arXiv Detail & Related papers (2024-10-28T17:55:08Z) - Response Wide Shut: Surprising Observations in Basic Vision Language Model Capabilities [30.176918208200604]
Vision-Language Models (VLMs) have emerged as general purpose tools for addressing a variety of complex computer vision problems.
These models have been shown to be highly capable, but also lacking some basic visual understanding skills.
This paper sets out to understand the limitations of SoTA VLMs on fundamental visual tasks.
arXiv Detail & Related papers (2024-08-13T08:26:32Z) - Losing Visual Needles in Image Haystacks: Vision Language Models are Easily Distracted in Short and Long Contexts [65.04791072532106]
We present LoCoVQA, a benchmark generator for evaluating long-context extractive reasoning in vision language models (VLMs)
LoCoVQA augments test examples for mathematical reasoning, VQA, and character recognition tasks with increasingly long visual contexts.
This test assesses how well VLMs can ignore irrelevant information when answering queries.
arXiv Detail & Related papers (2024-06-24T17:58:03Z) - Q-GroundCAM: Quantifying Grounding in Vision Language Models via GradCAM [3.2688425993442696]
Many probing studies have revealed that even the best-performing Vision and Language Models (VLMs) struggle to capture aspects of compositional scene understanding.
Recent VLM advancements include scaling up both model and dataset sizes, additional training objectives and levels of supervision.
This paper introduces a novel suite of quantitative metrics that utilize GradCAM activations to rigorously evaluate the grounding capabilities of pre-trained VLMs.
arXiv Detail & Related papers (2024-04-29T22:06:17Z) - SC-Tune: Unleashing Self-Consistent Referential Comprehension in Large Vision Language Models [19.005364038603204]
We introduce a novel fine-tuning paradigm named Self-Consistency Tuning (SC-Tune)
SC-Tune features the synergistic learning of a cyclic describer-locator system.
We demonstrate that SC-Tune significantly elevates performance across a spectrum of object-level vision-language benchmarks.
arXiv Detail & Related papers (2024-03-20T03:00:21Z) - Finer: Investigating and Enhancing Fine-Grained Visual Concept Recognition in Large Vision Language Models [57.95366341738857]
In-depth analyses show that instruction-tuned LVLMs exhibit modality gap, showing discrepancy when given textual and visual inputs that correspond to the same concept.
We propose a multiple attribute-centric evaluation benchmark, Finer, to evaluate LVLMs' fine-grained visual comprehension ability and provide significantly improved explainability.
arXiv Detail & Related papers (2024-02-26T05:43:51Z) - Prismatic VLMs: Investigating the Design Space of Visually-Conditioned Language Models [73.40350756742231]
Visually-conditioned language models (VLMs) have seen growing adoption in applications such as visual dialogue, scene understanding, and robotic task planning.
Despite the volume of new releases, key design decisions around image preprocessing, architecture, and optimization are under-explored.
arXiv Detail & Related papers (2024-02-12T18:21:14Z) - Good Questions Help Zero-Shot Image Reasoning [110.1671684828904]
Question-Driven Visual Exploration (QVix) is a novel prompting strategy that enhances the exploratory capabilities of large vision-language models (LVLMs)
QVix enables a wider exploration of visual scenes, improving the LVLMs' reasoning accuracy and depth in tasks such as visual question answering and visual entailment.
Our evaluations on various challenging zero-shot vision-language benchmarks, including ScienceQA and fine-grained visual classification, demonstrate that QVix significantly outperforms existing methods.
arXiv Detail & Related papers (2023-12-04T03:18:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.