論文の概要: Lifelong Change Detection: Continuous Domain Adaptation for Small Object
Change Detection in Every Robot Navigation
- arxiv url: http://arxiv.org/abs/2306.16086v1
- Date: Wed, 28 Jun 2023 10:34:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-29 14:33:22.362460
- Title: Lifelong Change Detection: Continuous Domain Adaptation for Small Object
Change Detection in Every Robot Navigation
- Title(参考訳): 生涯変化検出: ロボットナビゲーションにおける小物体変化検出のための連続領域適応
- Authors: Koji Takeda, Kanji Tanaka, Yoshimasa Nakamura
- Abstract要約: 地表面の視界変化検出は, 複雑な非線形視点投影と相まって, 視界の不確かさに悩まされる。
正規化のためには,手動で注釈付けされた高品質なオブジェクトクラス固有の先行手法が一般的である。
本手法は,日常のロボットナビゲーションにおいて検出される物体の変化を,将来的な変化検出タスクを改善するために,追加の事前として再利用できるという,強力で汎用的な考え方を採用する。
- 参考スコア(独自算出の注目度): 5.8010446129208155
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The recently emerging research area in robotics, ground view change
detection, suffers from its ill-posed-ness because of visual uncertainty
combined with complex nonlinear perspective projection. To regularize the
ill-posed-ness, the commonly applied supervised learning methods (e.g.,
CSCD-Net) rely on manually annotated high-quality object-class-specific priors.
In this work, we consider general application domains where no manual
annotation is available and present a fully self-supervised approach. The
present approach adopts the powerful and versatile idea that object changes
detected during everyday robot navigation can be reused as additional priors to
improve future change detection tasks. Furthermore, a robustified framework is
implemented and verified experimentally in a new challenging practical
application scenario: ground-view small object change detection.
- Abstract(参考訳): 最近発表されたロボット工学の研究領域である地景変化検出は、視覚の不確かさと複雑な非線形視点の投影が組み合わさって、その不適切さに苦しめられている。
不適切さを正則化するために、一般的に適用される教師付き学習方法(cscd-netなど)は、手作業で注釈付き高品質なオブジェクトクラス固有の優先順位に依存する。
本稿では,手動アノテーションが利用できない汎用アプリケーションドメインについて検討し,完全な自己監督アプローチを提案する。
本手法は,日常のロボットナビゲーションにおいて検出される物体の変化を,将来の変化検出タスクを改善するために,追加の事前として再利用できるという,強力で汎用的な考え方を採用する。
さらに、グラウンダービューの小さなオブジェクト変更検出という、新しい挑戦的な実践シナリオにおいて、堅牢化フレームワークを実装し、実験的に検証する。
関連論文リスト
- LEAP:D - A Novel Prompt-based Approach for Domain-Generalized Aerial Object Detection [2.1233286062376497]
学習可能なプロンプトを用いた革新的な視覚言語アプローチを提案する。
この手動プロンプトからのシフトは、ドメイン固有の知識干渉を減らすことを目的としている。
トレーニングプロセスを一段階のアプローチで合理化し、学習可能なプロンプトとモデルトレーニングを同時に更新する。
論文 参考訳(メタデータ) (2024-11-14T04:39:10Z) - Zero-shot Degree of Ill-posedness Estimation for Active Small Object Change Detection [8.977792536037956]
日常的な屋内ナビゲーションでは、ロボットは区別できない小さな変化物体を検出する必要がある。
既存の技術は、変更検出モデルを正規化するために、高品質なクラス固有オブジェクトに依存している。
本研究では,受動とアクティブビジョンの両方を改善するために,DoIの概念を検討する。
論文 参考訳(メタデータ) (2024-05-10T01:56:39Z) - Deep Active Perception for Object Detection using Navigation Proposals [39.52573252842573]
オブジェクト検出のための汎用的な教師付き能動知覚パイプラインを提案する。
既存のオフ・ザ・シェルフ・オブジェクト・ディテクターを使って訓練でき、シミュレーション環境の進歩も活用できる。
提案手法は, Webots ロボットシミュレータ内に構築された合成データセットを用いて評価した。
論文 参考訳(メタデータ) (2023-12-15T20:55:52Z) - DARTH: Holistic Test-time Adaptation for Multiple Object Tracking [87.72019733473562]
複数物体追跡(MOT)は、自律運転における知覚システムの基本的構成要素である。
運転システムの安全性の追求にもかかわらず、テスト時間条件における領域シフトに対するMOT適応問題に対する解決策は提案されていない。
我々はMOTの総合的なテスト時間適応フレームワークであるDARTHを紹介する。
論文 参考訳(メタデータ) (2023-10-03T10:10:42Z) - Fast and Accurate Object Detection on Asymmetrical Receptive Field [0.0]
本稿では,物体検出精度を受容場の変化の観点から改善する手法を提案する。
YOLOv5の頭部の構造は、非対称なプール層を付加することによって改変される。
本稿では, 従来の YOLOv5 モデルと比較し, いくつかのパラメータから解析する。
論文 参考訳(メタデータ) (2023-03-15T23:59:18Z) - Domain Invariant Siamese Attention Mask for Small Object Change
Detection via Everyday Indoor Robot Navigation [5.161531917413708]
日常的な屋内ロボットナビゲーションによる画像変化検出の課題を,新しい視点から検討する。
本研究では,教師なしのオンザフライドメイン適応機能を備えた新たな自己注意手法を提案する。
実験により,我々の注目技術は最先端の画像変化検出モデルを大幅に向上させることが示された。
論文 参考訳(メタデータ) (2022-03-29T08:57:56Z) - Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency [90.71745178767203]
ディープラーニングに基づく3Dオブジェクト検出は、大規模な自律走行データセットの出現によって、前例のない成功を収めた。
既存の3Dドメイン適応検出手法は、しばしばターゲットのドメインアノテーションへの事前アクセスを前提とします。
我々は、ソースドメインアノテーションのみを利用する、より現実的な、教師なしの3Dドメイン適応検出について研究する。
論文 参考訳(メタデータ) (2021-07-23T17:19:23Z) - Unsupervised Domain Adaption of Object Detectors: A Survey [87.08473838767235]
近年のディープラーニングの進歩は、様々なコンピュータビジョンアプリケーションのための正確で効率的なモデルの開発につながっている。
高度に正確なモデルを学ぶには、大量の注釈付きイメージを持つデータセットの可用性に依存する。
このため、ラベルスカースデータセットに視覚的に異なる画像がある場合、モデルの性能は大幅に低下する。
論文 参考訳(メタデータ) (2021-05-27T23:34:06Z) - Robust Object Detection via Instance-Level Temporal Cycle Confusion [89.1027433760578]
物体検出器の分布外一般化を改善するための補助的自己監視タスクの有効性を検討する。
最大エントロピーの原理に触発されて,新しい自己監督タスクであるインスタンスレベル時間サイクル混乱(cycconf)を導入する。
それぞれのオブジェクトに対して、タスクは、ビデオ内の隣接するフレームで最も異なるオブジェクトの提案を見つけ、自己スーパービジョンのために自分自身にサイクルバックすることです。
論文 参考訳(メタデータ) (2021-04-16T21:35:08Z) - Slender Object Detection: Diagnoses and Improvements [74.40792217534]
本稿では,超高アスペクト比,すなわちtextbfslender オブジェクトの特定タイプの検出について検討する。
古典的物体検出法では、細い物体に対してのみ評価される場合、COCO上の18.9%のmAPの劇的な低下が観察される。
論文 参考訳(メタデータ) (2020-11-17T09:39:42Z) - Incremental Object Detection via Meta-Learning [77.55310507917012]
本稿では,段階的タスク間の情報を最適に共有するように,モデル勾配を再形成するメタラーニング手法を提案する。
既存のメタ学習法と比較して,本手法はタスク非依存であり,オブジェクト検出のための高容量モデルに新たなクラスやスケールを段階的に追加することができる。
論文 参考訳(メタデータ) (2020-03-17T13:40:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。