論文の概要: Deep Active Perception for Object Detection using Navigation Proposals
- arxiv url: http://arxiv.org/abs/2312.10200v1
- Date: Fri, 15 Dec 2023 20:55:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-19 18:01:16.967186
- Title: Deep Active Perception for Object Detection using Navigation Proposals
- Title(参考訳): ナビゲーション提案を用いた物体検出のための深部アクティブセンシング
- Authors: Stefanos Ginargiros, Nikolaos Passalis and Anastasios Tefas
- Abstract要約: オブジェクト検出のための汎用的な教師付き能動知覚パイプラインを提案する。
既存のオフ・ザ・シェルフ・オブジェクト・ディテクターを使って訓練でき、シミュレーション環境の進歩も活用できる。
提案手法は, Webots ロボットシミュレータ内に構築された合成データセットを用いて評価した。
- 参考スコア(独自算出の注目度): 39.52573252842573
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Learning (DL) has brought significant advances to robotics vision tasks.
However, most existing DL methods have a major shortcoming, they rely on a
static inference paradigm inherent in traditional computer vision pipelines. On
the other hand, recent studies have found that active perception improves the
perception abilities of various models by going beyond these static paradigms.
Despite the significant potential of active perception, it poses several
challenges, primarily involving significant changes in training pipelines for
deep learning models. To overcome these limitations, in this work, we propose a
generic supervised active perception pipeline for object detection that can be
trained using existing off-the-shelf object detectors, while also leveraging
advances in simulation environments. To this end, the proposed method employs
an additional neural network architecture that estimates better viewpoints in
cases where the object detector confidence is insufficient. The proposed method
was evaluated on synthetic datasets, constructed within the Webots robotics
simulator, showcasing its effectiveness in two object detection cases.
- Abstract(参考訳): ディープラーニング(DL)は、ロボットビジョンタスクに大きな進歩をもたらした。
しかし、既存のDLメソッドの多くは大きな欠点があり、従来のコンピュータビジョンパイプラインに固有の静的推論パラダイムに依存している。
一方,近年の研究では,能動的知覚が静的パラダイムを越えて様々なモデルの知覚能力を向上させることが示されている。
アクティブな認識の潜在的な可能性にもかかわらず、主にディープラーニングモデルのためのトレーニングパイプラインの大幅な変更を含む、いくつかの課題が発生している。
これらの制約を克服するため,本研究では,既存のオフザシェルフ物体検出器を用いて物体検出のための汎用能動認識パイプラインを提案するとともに,シミュレーション環境の進歩も活用する。
この目的のために,提案手法では,物体検出装置の信頼性が不十分な場合の視点を推定する追加のニューラルネットワークアーキテクチャを用いる。
提案手法はwebotsロボティクスシミュレータ内に構築した合成データセットを用いて評価し,2つの物体検出においてその効果を示した。
関連論文リスト
- Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future [119.88454942558485]
水中物体検出(UOD)は、水中の画像やビデオ中の物体を識別し、ローカライズすることを目的としている。
近年、人工知能(AI)に基づく手法、特に深層学習法は、UODにおいて有望な性能を示している。
論文 参考訳(メタデータ) (2024-10-08T00:25:33Z) - Zero-shot Degree of Ill-posedness Estimation for Active Small Object Change Detection [8.977792536037956]
日常的な屋内ナビゲーションでは、ロボットは区別できない小さな変化物体を検出する必要がある。
既存の技術は、変更検出モデルを正規化するために、高品質なクラス固有オブジェクトに依存している。
本研究では,受動とアクティブビジョンの両方を改善するために,DoIの概念を検討する。
論文 参考訳(メタデータ) (2024-05-10T01:56:39Z) - Detecting Out-of-distribution Objects Using Neuron Activation Patterns [0.0]
物体検出装置(NAPTRON)における分布外サンプル検出のためのニューロン活性化PaTteRnsを導入する。
提案手法は,ID(In-distribution)のパフォーマンスに影響を与えることなく,最先端の手法よりも優れている。
OODオブジェクト検出のための最大のオープンソースベンチマークを作成しました。
論文 参考訳(メタデータ) (2023-07-31T06:41:26Z) - Lifelong Change Detection: Continuous Domain Adaptation for Small Object
Change Detection in Every Robot Navigation [5.8010446129208155]
地表面の視界変化検出は, 複雑な非線形視点投影と相まって, 視界の不確かさに悩まされる。
正規化のためには,手動で注釈付けされた高品質なオブジェクトクラス固有の先行手法が一般的である。
本手法は,日常のロボットナビゲーションにおいて検出される物体の変化を,将来的な変化検出タスクを改善するために,追加の事前として再利用できるという,強力で汎用的な考え方を採用する。
論文 参考訳(メタデータ) (2023-06-28T10:34:59Z) - Inverting and Understanding Object Detectors [15.207501110589924]
本稿では,最新の物体検出法を理解し,レイアウトインバージョンに対する最適化に基づくアプローチを開発するために,インバージョンを主要なツールとして用いることを提案する。
我々は, 種々の現代の物体検出器にレイアウト反転技術を適用して, 検出器の興味深い特性を明らかにした。
論文 参考訳(メタデータ) (2021-06-26T03:31:59Z) - Data-efficient Weakly-supervised Learning for On-line Object Detection
under Domain Shift in Robotics [24.878465999976594]
文献では、Deep Convolutional Neural Networks (DCNNs)に基づく多数のオブジェクト検出方法が提案されている。
これらの手法はロボティクスに重要な制限がある:オフラインデータのみに学習するとバイアスが発生し、新しいタスクへの適応を防ぐことができる。
本研究では,弱い教師付き学習がこれらの問題にどのように対処できるかを検討する。
論文 参考訳(メタデータ) (2020-12-28T16:36:11Z) - Unadversarial Examples: Designing Objects for Robust Vision [100.4627585672469]
現代の機械学習アルゴリズムの感度を入力摂動に活かし、「ロバストオブジェクト」を設計するフレームワークを開発しています。
標準ベンチマークから(シミュレーション中)ロボット工学まで,さまざまな視覚ベースのタスクに対するフレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2020-12-22T18:26:07Z) - Plausible Counterfactuals: Auditing Deep Learning Classifiers with
Realistic Adversarial Examples [84.8370546614042]
ディープラーニングモデルのブラックボックスの性質は、彼らがデータから何を学ぶかについて、未回答の疑問を提起している。
GAN(Generative Adversarial Network)とマルチオブジェクトは、監査されたモデルに妥当な攻撃を与えるために使用される。
その実用性は人間の顔の分類タスクの中で示され、提案されたフレームワークの潜在的可能性を明らかにしている。
論文 参考訳(メタデータ) (2020-03-25T11:08:56Z) - Incremental Object Detection via Meta-Learning [77.55310507917012]
本稿では,段階的タスク間の情報を最適に共有するように,モデル勾配を再形成するメタラーニング手法を提案する。
既存のメタ学習法と比較して,本手法はタスク非依存であり,オブジェクト検出のための高容量モデルに新たなクラスやスケールを段階的に追加することができる。
論文 参考訳(メタデータ) (2020-03-17T13:40:00Z) - Progressive Object Transfer Detection [84.48927705173494]
本稿では,新しいプログレッシブオブジェクト転送検出(POTD)フレームワークを提案する。
第一に、POTDは様々なドメインの様々なオブジェクトを効果的にプログレッシブな検出手順に活用することができる。
第2に、POTDは2つの微妙な転送段階、すなわち、LSTD(low-Shot Transfer Detection)とWSTD(Weakly Supervised Transfer Detection)から構成される。
論文 参考訳(メタデータ) (2020-02-12T00:16:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。