Lifelong Change Detection: Continuous Domain Adaptation for Small Object
Change Detection in Every Robot Navigation
- URL: http://arxiv.org/abs/2306.16086v1
- Date: Wed, 28 Jun 2023 10:34:59 GMT
- Title: Lifelong Change Detection: Continuous Domain Adaptation for Small Object
Change Detection in Every Robot Navigation
- Authors: Koji Takeda, Kanji Tanaka, Yoshimasa Nakamura
- Abstract summary: Ground view change detection suffers from its ill-posed-ness because of visual uncertainty combined with complex nonlinear perspective projection.
To regularize the ill-posed-ness, the commonly applied supervised learning methods rely on manually annotated high-quality object-class-specific priors.
The present approach adopts the powerful and versatile idea that object changes detected during everyday robot navigation can be reused as additional priors to improve future change detection tasks.
- Score: 5.8010446129208155
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The recently emerging research area in robotics, ground view change
detection, suffers from its ill-posed-ness because of visual uncertainty
combined with complex nonlinear perspective projection. To regularize the
ill-posed-ness, the commonly applied supervised learning methods (e.g.,
CSCD-Net) rely on manually annotated high-quality object-class-specific priors.
In this work, we consider general application domains where no manual
annotation is available and present a fully self-supervised approach. The
present approach adopts the powerful and versatile idea that object changes
detected during everyday robot navigation can be reused as additional priors to
improve future change detection tasks. Furthermore, a robustified framework is
implemented and verified experimentally in a new challenging practical
application scenario: ground-view small object change detection.
Related papers
- LEAP:D - A Novel Prompt-based Approach for Domain-Generalized Aerial Object Detection [2.1233286062376497]
We introduce an innovative vision-language approach using learnable prompts.
This shift from conventional manual prompts aims to reduce domain-specific knowledge interference.
We streamline the training process with a one-step approach, updating the learnable prompt concurrently with model training.
arXiv Detail & Related papers (2024-11-14T04:39:10Z) - Zero-shot Degree of Ill-posedness Estimation for Active Small Object Change Detection [8.977792536037956]
In everyday indoor navigation, robots often needto detect non-distinctive small-change objects.
Existing techniques rely on high-quality class-specific object priors to regularize a change detector model.
In this study, we explore the concept of degree-of-ill-posedness (DoI) to improve both passive and activevision.
arXiv Detail & Related papers (2024-05-10T01:56:39Z) - Deep Active Perception for Object Detection using Navigation Proposals [39.52573252842573]
We propose a generic supervised active perception pipeline for object detection.
It can be trained using existing off-the-shelf object detectors, while also leveraging advances in simulation environments.
The proposed method was evaluated on synthetic datasets, constructed within the Webots robotics simulator.
arXiv Detail & Related papers (2023-12-15T20:55:52Z) - DARTH: Holistic Test-time Adaptation for Multiple Object Tracking [87.72019733473562]
Multiple object tracking (MOT) is a fundamental component of perception systems for autonomous driving.
Despite the urge of safety in driving systems, no solution to the MOT adaptation problem to domain shift in test-time conditions has ever been proposed.
We introduce DARTH, a holistic test-time adaptation framework for MOT.
arXiv Detail & Related papers (2023-10-03T10:10:42Z) - Fast and Accurate Object Detection on Asymmetrical Receptive Field [0.0]
This article proposes methods for improving object detection accuracy from the perspective of changing receptive fields.
The structure of the head part of YOLOv5 is modified by adding asymmetrical pooling layers.
The performances of the new model in this article are compared with original YOLOv5 model and analyzed from several parameters.
arXiv Detail & Related papers (2023-03-15T23:59:18Z) - Domain Invariant Siamese Attention Mask for Small Object Change
Detection via Everyday Indoor Robot Navigation [5.161531917413708]
The problem of image change detection via everyday indoor robot navigation is explored from a novel perspective.
We propose a new self-attention technique with an ability of unsupervised on-the-fly domain adaptation.
Experiments show that our attention technique significantly boosts the state-of-the-art image change detection model.
arXiv Detail & Related papers (2022-03-29T08:57:56Z) - Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency [90.71745178767203]
Deep learning-based 3D object detection has achieved unprecedented success with the advent of large-scale autonomous driving datasets.
Existing 3D domain adaptive detection methods often assume prior access to the target domain annotations, which is rarely feasible in the real world.
We study a more realistic setting, unsupervised 3D domain adaptive detection, which only utilizes source domain annotations.
arXiv Detail & Related papers (2021-07-23T17:19:23Z) - Unsupervised Domain Adaption of Object Detectors: A Survey [87.08473838767235]
Recent advances in deep learning have led to the development of accurate and efficient models for various computer vision applications.
Learning highly accurate models relies on the availability of datasets with a large number of annotated images.
Due to this, model performance drops drastically when evaluated on label-scarce datasets having visually distinct images.
arXiv Detail & Related papers (2021-05-27T23:34:06Z) - Robust Object Detection via Instance-Level Temporal Cycle Confusion [89.1027433760578]
We study the effectiveness of auxiliary self-supervised tasks to improve the out-of-distribution generalization of object detectors.
Inspired by the principle of maximum entropy, we introduce a novel self-supervised task, instance-level temporal cycle confusion (CycConf)
For each object, the task is to find the most different object proposals in the adjacent frame in a video and then cycle back to itself for self-supervision.
arXiv Detail & Related papers (2021-04-16T21:35:08Z) - Slender Object Detection: Diagnoses and Improvements [74.40792217534]
In this paper, we are concerned with the detection of a particular type of objects with extreme aspect ratios, namely textbfslender objects.
For a classical object detection method, a drastic drop of $18.9%$ mAP on COCO is observed, if solely evaluated on slender objects.
arXiv Detail & Related papers (2020-11-17T09:39:42Z) - Incremental Object Detection via Meta-Learning [77.55310507917012]
We propose a meta-learning approach that learns to reshape model gradients, such that information across incremental tasks is optimally shared.
In comparison to existing meta-learning methods, our approach is task-agnostic, allows incremental addition of new-classes and scales to high-capacity models for object detection.
arXiv Detail & Related papers (2020-03-17T13:40:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.