Zero-shot Degree of Ill-posedness Estimation for Active Small Object Change Detection
- URL: http://arxiv.org/abs/2405.06185v1
- Date: Fri, 10 May 2024 01:56:39 GMT
- Title: Zero-shot Degree of Ill-posedness Estimation for Active Small Object Change Detection
- Authors: Koji Takeda, Kanji Tanaka, Yoshimasa Nakamura, Asako Kanezaki,
- Abstract summary: In everyday indoor navigation, robots often needto detect non-distinctive small-change objects.
Existing techniques rely on high-quality class-specific object priors to regularize a change detector model.
In this study, we explore the concept of degree-of-ill-posedness (DoI) to improve both passive and activevision.
- Score: 8.977792536037956
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In everyday indoor navigation, robots often needto detect non-distinctive small-change objects (e.g., stationery,lost items, and junk, etc.) to maintain domain knowledge. Thisis most relevant to ground-view change detection (GVCD), a recently emerging research area in the field of computer vision.However, these existing techniques rely on high-quality class-specific object priors to regularize a change detector modelthat cannot be applied to semantically nondistinctive smallobjects. To address ill-posedness, in this study, we explorethe concept of degree-of-ill-posedness (DoI) from the newperspective of GVCD, aiming to improve both passive and activevision. This novel DoI problem is highly domain-dependent,and manually collecting fine-grained annotated training datais expensive. To regularize this problem, we apply the conceptof self-supervised learning to achieve efficient DoI estimationscheme and investigate its generalization to diverse datasets.Specifically, we tackle the challenging issue of obtaining self-supervision cues for semantically non-distinctive unseen smallobjects and show that novel "oversegmentation cues" from openvocabulary semantic segmentation can be effectively exploited.When applied to diverse real datasets, the proposed DoI modelcan boost state-of-the-art change detection models, and it showsstable and consistent improvements when evaluated on real-world datasets.
Related papers
- Unsupervised Model Diagnosis [49.36194740479798]
This paper proposes Unsupervised Model Diagnosis (UMO) to produce semantic counterfactual explanations without any user guidance.
Our approach identifies and visualizes changes in semantics, and then matches these changes to attributes from wide-ranging text sources.
arXiv Detail & Related papers (2024-10-08T17:59:03Z) - Semi-Supervised Object Detection: A Survey on Progress from CNN to Transformer [12.042768320132694]
This paper presents a review of 27 cutting-edge developments in semi-supervised learning for object detection.
It covers data augmentation techniques, pseudo-labeling strategies, consistency regularization, and adversarial training methods.
We aim to ignite further research interest in overcoming existing challenges and exploring new directions in semi-supervised learning for object detection.
arXiv Detail & Related papers (2024-07-11T12:58:13Z) - Deep Learning-Based Object Pose Estimation: A Comprehensive Survey [73.74933379151419]
We discuss the recent advances in deep learning-based object pose estimation.
Our survey also covers multiple input data modalities, degrees-of-freedom of output poses, object properties, and downstream tasks.
arXiv Detail & Related papers (2024-05-13T14:44:22Z) - Deep Active Perception for Object Detection using Navigation Proposals [39.52573252842573]
We propose a generic supervised active perception pipeline for object detection.
It can be trained using existing off-the-shelf object detectors, while also leveraging advances in simulation environments.
The proposed method was evaluated on synthetic datasets, constructed within the Webots robotics simulator.
arXiv Detail & Related papers (2023-12-15T20:55:52Z) - Lifelong Change Detection: Continuous Domain Adaptation for Small Object
Change Detection in Every Robot Navigation [5.8010446129208155]
Ground view change detection suffers from its ill-posed-ness because of visual uncertainty combined with complex nonlinear perspective projection.
To regularize the ill-posed-ness, the commonly applied supervised learning methods rely on manually annotated high-quality object-class-specific priors.
The present approach adopts the powerful and versatile idea that object changes detected during everyday robot navigation can be reused as additional priors to improve future change detection tasks.
arXiv Detail & Related papers (2023-06-28T10:34:59Z) - Evaluating the Label Efficiency of Contrastive Self-Supervised Learning
for Multi-Resolution Satellite Imagery [0.0]
Self-supervised learning has been applied in the remote sensing domain to exploit readily-available unlabeled data.
In this paper, we study self-supervised visual representation learning through the lens of label efficiency.
arXiv Detail & Related papers (2022-10-13T06:54:13Z) - Incremental-DETR: Incremental Few-Shot Object Detection via
Self-Supervised Learning [60.64535309016623]
We propose the Incremental-DETR that does incremental few-shot object detection via fine-tuning and self-supervised learning on the DETR object detector.
To alleviate severe over-fitting with few novel class data, we first fine-tune the class-specific components of DETR with self-supervision.
We further introduce a incremental few-shot fine-tuning strategy with knowledge distillation on the class-specific components of DETR to encourage the network in detecting novel classes without catastrophic forgetting.
arXiv Detail & Related papers (2022-05-09T05:08:08Z) - Unsupervised Domain Adaption of Object Detectors: A Survey [87.08473838767235]
Recent advances in deep learning have led to the development of accurate and efficient models for various computer vision applications.
Learning highly accurate models relies on the availability of datasets with a large number of annotated images.
Due to this, model performance drops drastically when evaluated on label-scarce datasets having visually distinct images.
arXiv Detail & Related papers (2021-05-27T23:34:06Z) - Robust Object Detection via Instance-Level Temporal Cycle Confusion [89.1027433760578]
We study the effectiveness of auxiliary self-supervised tasks to improve the out-of-distribution generalization of object detectors.
Inspired by the principle of maximum entropy, we introduce a novel self-supervised task, instance-level temporal cycle confusion (CycConf)
For each object, the task is to find the most different object proposals in the adjacent frame in a video and then cycle back to itself for self-supervision.
arXiv Detail & Related papers (2021-04-16T21:35:08Z) - Incremental Object Detection via Meta-Learning [77.55310507917012]
We propose a meta-learning approach that learns to reshape model gradients, such that information across incremental tasks is optimally shared.
In comparison to existing meta-learning methods, our approach is task-agnostic, allows incremental addition of new-classes and scales to high-capacity models for object detection.
arXiv Detail & Related papers (2020-03-17T13:40:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.