Deep Active Perception for Object Detection using Navigation Proposals
- URL: http://arxiv.org/abs/2312.10200v1
- Date: Fri, 15 Dec 2023 20:55:52 GMT
- Title: Deep Active Perception for Object Detection using Navigation Proposals
- Authors: Stefanos Ginargiros, Nikolaos Passalis and Anastasios Tefas
- Abstract summary: We propose a generic supervised active perception pipeline for object detection.
It can be trained using existing off-the-shelf object detectors, while also leveraging advances in simulation environments.
The proposed method was evaluated on synthetic datasets, constructed within the Webots robotics simulator.
- Score: 39.52573252842573
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Learning (DL) has brought significant advances to robotics vision tasks.
However, most existing DL methods have a major shortcoming, they rely on a
static inference paradigm inherent in traditional computer vision pipelines. On
the other hand, recent studies have found that active perception improves the
perception abilities of various models by going beyond these static paradigms.
Despite the significant potential of active perception, it poses several
challenges, primarily involving significant changes in training pipelines for
deep learning models. To overcome these limitations, in this work, we propose a
generic supervised active perception pipeline for object detection that can be
trained using existing off-the-shelf object detectors, while also leveraging
advances in simulation environments. To this end, the proposed method employs
an additional neural network architecture that estimates better viewpoints in
cases where the object detector confidence is insufficient. The proposed method
was evaluated on synthetic datasets, constructed within the Webots robotics
simulator, showcasing its effectiveness in two object detection cases.
Related papers
- Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future [119.88454942558485]
Underwater object detection (UOD) aims to identify and localise objects in underwater images or videos.
In recent years, artificial intelligence (AI) based methods, especially deep learning methods, have shown promising performance in UOD.
arXiv Detail & Related papers (2024-10-08T00:25:33Z) - Zero-shot Degree of Ill-posedness Estimation for Active Small Object Change Detection [8.977792536037956]
In everyday indoor navigation, robots often needto detect non-distinctive small-change objects.
Existing techniques rely on high-quality class-specific object priors to regularize a change detector model.
In this study, we explore the concept of degree-of-ill-posedness (DoI) to improve both passive and activevision.
arXiv Detail & Related papers (2024-05-10T01:56:39Z) - Detecting Out-of-distribution Objects Using Neuron Activation Patterns [0.0]
We introduce Neuron Activation PaTteRns for out-of-distribution samples detection in Object detectioN (NAPTRON)
Our approach outperforms state-of-the-art methods, without the need to affect in-distribution (ID) performance.
We have created the largest open-source benchmark for OOD object detection.
arXiv Detail & Related papers (2023-07-31T06:41:26Z) - Lifelong Change Detection: Continuous Domain Adaptation for Small Object
Change Detection in Every Robot Navigation [5.8010446129208155]
Ground view change detection suffers from its ill-posed-ness because of visual uncertainty combined with complex nonlinear perspective projection.
To regularize the ill-posed-ness, the commonly applied supervised learning methods rely on manually annotated high-quality object-class-specific priors.
The present approach adopts the powerful and versatile idea that object changes detected during everyday robot navigation can be reused as additional priors to improve future change detection tasks.
arXiv Detail & Related papers (2023-06-28T10:34:59Z) - Inverting and Understanding Object Detectors [15.207501110589924]
We propose using inversion as a primary tool to understand modern object detectors and develop an optimization-based approach to layout inversion.
We reveal intriguing properties of detectors by applying our layout inversion technique to a variety of modern object detectors.
arXiv Detail & Related papers (2021-06-26T03:31:59Z) - Data-efficient Weakly-supervised Learning for On-line Object Detection
under Domain Shift in Robotics [24.878465999976594]
Several object detection methods have been proposed in the literature, the vast majority based on Deep Convolutional Neural Networks (DCNNs)
These methods have important limitations for robotics: Learning solely on off-line data may introduce biases, and prevents adaptation to novel tasks.
In this work, we investigate how weakly-supervised learning can cope with these problems.
arXiv Detail & Related papers (2020-12-28T16:36:11Z) - Unadversarial Examples: Designing Objects for Robust Vision [100.4627585672469]
We develop a framework that exploits the sensitivity of modern machine learning algorithms to input perturbations in order to design "robust objects"
We demonstrate the efficacy of the framework on a wide variety of vision-based tasks ranging from standard benchmarks to (in-simulation) robotics.
arXiv Detail & Related papers (2020-12-22T18:26:07Z) - Plausible Counterfactuals: Auditing Deep Learning Classifiers with
Realistic Adversarial Examples [84.8370546614042]
Black-box nature of Deep Learning models has posed unanswered questions about what they learn from data.
Generative Adversarial Network (GAN) and multi-objectives are used to furnish a plausible attack to the audited model.
Its utility is showcased within a human face classification task, unveiling the enormous potential of the proposed framework.
arXiv Detail & Related papers (2020-03-25T11:08:56Z) - Incremental Object Detection via Meta-Learning [77.55310507917012]
We propose a meta-learning approach that learns to reshape model gradients, such that information across incremental tasks is optimally shared.
In comparison to existing meta-learning methods, our approach is task-agnostic, allows incremental addition of new-classes and scales to high-capacity models for object detection.
arXiv Detail & Related papers (2020-03-17T13:40:00Z) - Progressive Object Transfer Detection [84.48927705173494]
We propose a novel Progressive Object Transfer Detection (POTD) framework.
First, POTD can leverage various object supervision of different domains effectively into a progressive detection procedure.
Second, POTD consists of two delicate transfer stages, i.e., Low-Shot Transfer Detection (LSTD), and Weakly-Supervised Transfer Detection (WSTD)
arXiv Detail & Related papers (2020-02-12T00:16:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.