High-Q trenched aluminum coplanar resonators with an ultrasonic edge
microcutting for superconducting quantum devices
- URL: http://arxiv.org/abs/2306.16301v1
- Date: Wed, 28 Jun 2023 15:25:37 GMT
- Title: High-Q trenched aluminum coplanar resonators with an ultrasonic edge
microcutting for superconducting quantum devices
- Authors: E.V. Zikiy, A.I. Ivanov, N.S. Smirnov, D.O. Moskalev, V.I. Polozov,
A.R. Matanin, E.I. Malevannaya, V.V. Echeistov, T.G. Konstantinova and I.A.
Rodionov
- Abstract summary: Dielectric losses are one of the key factors limiting the coherence of superconducting qubits.
We report on superconducting CPW microwave resonators with internal quality factors exceeding 5x106 at high powers and 2x106 at low power.
Josephson junction compatible CPW resonators fabrication process with both airbridges and silicon substrate etching is proposed.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dielectric losses are one of the key factors limiting the coherence of
superconducting qubits. The impact of materials and fabrication steps on
dielectric losses can be evaluated using coplanar waveguide (CPW) microwave
resonators. Here, we report on superconducting CPW microwave resonators with
internal quality factors systematically exceeding 5x106 at high powers and
2x106 (with the best value of 4.4x106) at low power. Such performance is
demonstrated for 100-nm-thick aluminum resonators with 7-10.5 um center trace
on high-resistivity silicon substrates commonly used in quantum Josephson
junction circuits. We investigate internal quality factors of the resonators
with both dry and wet aluminum etching, as well as deep and isotropic reactive
ion etching of silicon substrate. Josephson junction compatible CPW resonators
fabrication process with both airbridges and silicon substrate etching is
proposed. Finally, we demonstrate the effect of airbridges positions and extra
process steps on the overall dielectric losses. The best quality fa ctors are
obtained for the wet etched aluminum resonators and isotropically removed
substrate with the proposed ultrasonic metal edge microcutting.
Related papers
- Fabrication and characterization of low-loss Al/Si/Al parallel plate capacitors for superconducting quantum information applications [0.0]
parallel plate capacitors composed of aluminum-contacted, crystalline silicon fins are shown to be a promising technology for use in superconducting circuits.
Single-crystal Si capacitors are incorporated in lumped element resonators and transmons by shunting them with lithographically patterned aluminum inductors and conventional $Al/AlO_x/Al$ Josephson junctions.
arXiv Detail & Related papers (2024-08-02T16:24:22Z) - Minimizing Kinetic Inductance in Tantalum-Based Superconducting Coplanar Waveguide Resonators for Alleviating Frequency Fluctuation Issues [4.3869590932623606]
tantalum films exhibit significantly larger kinetic inductances than aluminum or niobium.
We achieve a reduction in resonator frequency fluctuation by a factor of more than 100.
Our findings open up new avenues for the enhanced utilization of tantalum in large-scale superconducting chips.
arXiv Detail & Related papers (2024-05-05T14:49:33Z) - Site-Controlled Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride [62.170141783047974]
Single photon emitters hosted in hexagonal boron nitride (hBN) are essential building blocks for quantum photonic technologies that operate at room temperature.
We experimentally demonstrate large-area arrays of plasmonic nanoresonators for Purcell-induced site-controlled SPEs.
Our results offer arrays of bright, heterogeneously integrated quantum light sources, paving the way for robust and scalable quantum information systems.
arXiv Detail & Related papers (2024-05-03T23:02:30Z) - Characterization of process-related interfacial dielectric loss in
aluminum-on-silicon by resonator microwave measurements, materials analysis,
and imaging [0.0]
We investigate the influence of the fabrication process on dielectric loss in aluminum-on-silicon superconducting coplanar waveguide resonators.
These devices are essential components in superconducting quantum processors.
We identify the relative importance of reducing loss at the substrate-metal and the substrate-air interfaces.
arXiv Detail & Related papers (2024-03-01T18:16:28Z) - Hydrogen crystals reduce dissipation in superconducting resonators [0.0]
Internal quality factors of superconducting resonators made of granular aluminum can be improved by coating them with micrometric films of para-hydrogen molecular crystals.
We attribute the average measured dissipation to absorption of stray terahertz radiation at the crystal-resonator interface.
The hydrogen crystal does not introduce additional losses, which is promising for embedding impurities to couple to superconducting thin-film devices in hybrid quantum architectures.
arXiv Detail & Related papers (2023-06-07T02:37:19Z) - Millikelvin measurements of permittivity and loss tangent of lithium
niobate [50.591267188664666]
Lithium niobate is an electro-optic material with many applications in microwave signal processing, communication, quantum sensing, and quantum computing.
We present findings on evaluating the complex electromagnetic permittivity of lithium niobate at millikelvin temperatures.
arXiv Detail & Related papers (2023-02-24T22:05:42Z) - Thermal self-oscillations in monolayer graphene coupled to a
superconducting microwave cavity [58.720142291102135]
We observe thermal self-oscillations in a monolayer graphene flake coupled to superconducting resonator.
The experimental observations fit well with theoretical model based on thermal instability.
The modelling of the oscillation sidebands provides a method to evaluate electron phonon coupling in disordered graphene sample at low energies.
arXiv Detail & Related papers (2022-05-27T15:38:41Z) - Measurement of the Low-temperature Loss Tangent of High-resistivity
Silicon with a High Q-factor Superconducting Resonator [58.720142291102135]
We present the direct loss tangent measurement of a high-resist intrinsicivity (100) silicon wafer in the temperature range from 70 mK to 1 K.
The measurement was performed using a technique that takes advantage of a high quality factor superconducting niobium resonator.
arXiv Detail & Related papers (2021-08-19T20:13:07Z) - Quantum Sensors for Microscopic Tunneling Systems [58.720142291102135]
tunneling Two-Level-Systems (TLS) are important for micro-fabricated quantum devices such as superconducting qubits.
We present a method to characterize individual TLS in virtually arbitrary materials deposited as thin-films.
Our approach opens avenues for quantum material spectroscopy to investigate the structure of tunneling defects.
arXiv Detail & Related papers (2020-11-29T09:57:50Z) - Loss channels affecting lithium niobate phononic crystal resonators at
cryogenic temperature [1.5478632117921844]
We investigate the performance of microwave-frequency phononic crystal resonators fabricated on thin-film lithium niobate.
For different design geometries at millikelvin temperatures, we achieve mechanical internal quality factors $Q_i$ above $105 - 106$ at high microwave drive power.
We observe an anomalous low-temperature frequency shift consistent with resonant TLS decay and find that material choice can help to mitigate these losses.
arXiv Detail & Related papers (2020-10-02T14:28:55Z) - Comparison of Dielectric Loss in Titanium Nitride and Aluminum
Superconducting Resonators [45.82374977939355]
Lossy dielectrics are a significant source of decoherence in superconducting quantum circuits.
We fabricate isotropically trenched resonators to accentuate a specific dielectric region's contribution to resonator quality factor.
We evaluate the quality factor of each TiN resonator geometry with and without a post-process hydrofluoric (HF) etch, and find that it reduced losses from the substrate-air interface.
arXiv Detail & Related papers (2020-07-14T20:20:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.