Efficient and Multiply Robust Risk Estimation under General Forms of Dataset Shift
- URL: http://arxiv.org/abs/2306.16406v4
- Date: Sat, 8 Jun 2024 02:52:21 GMT
- Title: Efficient and Multiply Robust Risk Estimation under General Forms of Dataset Shift
- Authors: Hongxiang Qiu, Eric Tchetgen Tchetgen, Edgar Dobriban,
- Abstract summary: We study the general problem of efficiently estimating target population risk under various dataset shift conditions.
We develop efficient and multiply robust estimators along with a straightforward specification test.
We also derive efficiency bounds for two other dataset shift conditions, posterior drift and location-scale shift.
- Score: 22.708984813519155
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Statistical machine learning methods often face the challenge of limited data available from the population of interest. One remedy is to leverage data from auxiliary source populations, which share some conditional distributions or are linked in other ways with the target domain. Techniques leveraging such \emph{dataset shift} conditions are known as \emph{domain adaptation} or \emph{transfer learning}. Despite extensive literature on dataset shift, limited works address how to efficiently use the auxiliary populations to improve the accuracy of risk evaluation for a given machine learning task in the target population. In this paper, we study the general problem of efficiently estimating target population risk under various dataset shift conditions, leveraging semiparametric efficiency theory. We consider a general class of dataset shift conditions, which includes three popular conditions -- covariate, label and concept shift -- as special cases. We allow for partially non-overlapping support between the source and target populations. We develop efficient and multiply robust estimators along with a straightforward specification test of these dataset shift conditions. We also derive efficiency bounds for two other dataset shift conditions, posterior drift and location-scale shift. Simulation studies support the efficiency gains due to leveraging plausible dataset shift conditions.
Related papers
- Binary Quantification and Dataset Shift: An Experimental Investigation [54.14283123210872]
Quantification is the supervised learning task that consists of training predictors of the class prevalence values of sets of unlabelled data.
The relationship between quantification and other types of dataset shift remains, by and large, unexplored.
We propose a fine-grained taxonomy of types of dataset shift, by establishing protocols for the generation of datasets affected by these types of shift.
arXiv Detail & Related papers (2023-10-06T20:11:27Z) - Adapting to Latent Subgroup Shifts via Concepts and Proxies [82.01141290360562]
We show that the optimal target predictor can be non-parametrically identified with the help of concept and proxy variables available only in the source domain.
For continuous observations, we propose a latent variable model specific to the data generation process at hand.
arXiv Detail & Related papers (2022-12-21T18:30:22Z) - A unified framework for dataset shift diagnostics [2.449909275410288]
Supervised learning techniques typically assume training data originates from the target population.
Yet, dataset shift frequently arises, which, if not adequately taken into account, may decrease the performance of their predictors.
We propose a novel and flexible framework called DetectShift that quantifies and tests for multiple dataset shifts.
arXiv Detail & Related papers (2022-05-17T13:34:45Z) - Towards Backwards-Compatible Data with Confounded Domain Adaptation [0.0]
We seek to achieve general-purpose data backwards compatibility by modifying generalized label shift (GLS)
We present a novel framework for this problem, based on minimizing the expected divergence between the source and target conditional distributions.
We provide concrete implementations using the Gaussian reverse Kullback-Leibler divergence and the maximum mean discrepancy.
arXiv Detail & Related papers (2022-03-23T20:53:55Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Evaluating Model Robustness and Stability to Dataset Shift [7.369475193451259]
We propose a framework for analyzing stability of machine learning models.
We use the original evaluation data to determine distributions under which the algorithm performs poorly.
We estimate the algorithm's performance on the "worst-case" distribution.
arXiv Detail & Related papers (2020-10-28T17:35:39Z) - Robust Fairness under Covariate Shift [11.151913007808927]
Making predictions that are fair with regard to protected group membership has become an important requirement for classification algorithms.
We propose an approach that obtains the predictor that is robust to the worst-case in terms of target performance.
arXiv Detail & Related papers (2020-10-11T04:42:01Z) - BREEDS: Benchmarks for Subpopulation Shift [98.90314444545204]
We develop a methodology for assessing the robustness of models to subpopulation shift.
We leverage the class structure underlying existing datasets to control the data subpopulations that comprise the training and test distributions.
Applying this methodology to the ImageNet dataset, we create a suite of subpopulation shift benchmarks of varying granularity.
arXiv Detail & Related papers (2020-08-11T17:04:47Z) - Evaluating Prediction-Time Batch Normalization for Robustness under
Covariate Shift [81.74795324629712]
We call prediction-time batch normalization, which significantly improves model accuracy and calibration under covariate shift.
We show that prediction-time batch normalization provides complementary benefits to existing state-of-the-art approaches for improving robustness.
The method has mixed results when used alongside pre-training, and does not seem to perform as well under more natural types of dataset shift.
arXiv Detail & Related papers (2020-06-19T05:08:43Z) - Do We Really Need to Access the Source Data? Source Hypothesis Transfer
for Unsupervised Domain Adaptation [102.67010690592011]
Unsupervised adaptationUDA (UDA) aims to leverage the knowledge learned from a labeled source dataset to solve similar tasks in a new unlabeled domain.
Prior UDA methods typically require to access the source data when learning to adapt the model.
This work tackles a practical setting where only a trained source model is available and how we can effectively utilize such a model without source data to solve UDA problems.
arXiv Detail & Related papers (2020-02-20T03:13:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.