Robust Fairness under Covariate Shift
- URL: http://arxiv.org/abs/2010.05166v3
- Date: Sat, 6 Feb 2021 06:46:14 GMT
- Title: Robust Fairness under Covariate Shift
- Authors: Ashkan Rezaei, Anqi Liu, Omid Memarrast, Brian Ziebart
- Abstract summary: Making predictions that are fair with regard to protected group membership has become an important requirement for classification algorithms.
We propose an approach that obtains the predictor that is robust to the worst-case in terms of target performance.
- Score: 11.151913007808927
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Making predictions that are fair with regard to protected group membership
(race, gender, age, etc.) has become an important requirement for
classification algorithms. Existing techniques derive a fair model from sampled
labeled data relying on the assumption that training and testing data are
identically and independently drawn (iid) from the same distribution. In
practice, distribution shift can and does occur between training and testing
datasets as the characteristics of individuals interacting with the machine
learning system change. We investigate fairness under covariate shift, a
relaxation of the iid assumption in which the inputs or covariates change while
the conditional label distribution remains the same. We seek fair decisions
under these assumptions on target data with unknown labels. We propose an
approach that obtains the predictor that is robust to the worst-case in terms
of target performance while satisfying target fairness requirements and
matching statistical properties of the source data. We demonstrate the benefits
of our approach on benchmark prediction tasks.
Related papers
- Balancing Fairness and Accuracy in Data-Restricted Binary Classification [14.439413517433891]
This paper proposes a framework that models the trade-off between accuracy and fairness under four practical scenarios.
Experiments on three datasets demonstrate the utility of the proposed framework as a tool for quantifying the trade-offs.
arXiv Detail & Related papers (2024-03-12T15:01:27Z) - Chasing Fairness Under Distribution Shift: A Model Weight Perturbation
Approach [72.19525160912943]
We first theoretically demonstrate the inherent connection between distribution shift, data perturbation, and model weight perturbation.
We then analyze the sufficient conditions to guarantee fairness for the target dataset.
Motivated by these sufficient conditions, we propose robust fairness regularization (RFR)
arXiv Detail & Related papers (2023-03-06T17:19:23Z) - Breaking the Spurious Causality of Conditional Generation via Fairness
Intervention with Corrective Sampling [77.15766509677348]
Conditional generative models often inherit spurious correlations from the training dataset.
This can result in label-conditional distributions that are imbalanced with respect to another latent attribute.
We propose a general two-step strategy to mitigate this issue.
arXiv Detail & Related papers (2022-12-05T08:09:33Z) - Fairness Transferability Subject to Bounded Distribution Shift [5.62716254065607]
Given an algorithmic predictor that is "fair" on some source distribution, will it still be fair on an unknown target distribution that differs from the source within some bound?
We study the transferability of statistical group fairness for machine learning predictors subject to bounded distribution shifts.
arXiv Detail & Related papers (2022-05-31T22:16:44Z) - Conformal prediction for the design problem [72.14982816083297]
In many real-world deployments of machine learning, we use a prediction algorithm to choose what data to test next.
In such settings, there is a distinct type of distribution shift between the training and test data.
We introduce a method to quantify predictive uncertainty in such settings.
arXiv Detail & Related papers (2022-02-08T02:59:12Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Robust Fairness-aware Learning Under Sample Selection Bias [17.09665420515772]
We propose a framework for robust and fair learning under sample selection bias.
We develop two algorithms to handle sample selection bias when test data is both available and unavailable.
arXiv Detail & Related papers (2021-05-24T23:23:36Z) - Can Active Learning Preemptively Mitigate Fairness Issues? [66.84854430781097]
dataset bias is one of the prevailing causes of unfairness in machine learning.
We study whether models trained with uncertainty-based ALs are fairer in their decisions with respect to a protected class.
We also explore the interaction of algorithmic fairness methods such as gradient reversal (GRAD) and BALD.
arXiv Detail & Related papers (2021-04-14T14:20:22Z) - Robust Validation: Confident Predictions Even When Distributions Shift [19.327409270934474]
We describe procedures for robust predictive inference, where a model provides uncertainty estimates on its predictions rather than point predictions.
We present a method that produces prediction sets (almost exactly) giving the right coverage level for any test distribution in an $f$-divergence ball around the training population.
An essential component of our methodology is to estimate the amount of expected future data shift and build robustness to it.
arXiv Detail & Related papers (2020-08-10T17:09:16Z) - Towards Accuracy-Fairness Paradox: Adversarial Example-based Data
Augmentation for Visual Debiasing [15.689539491203373]
Machine learning fairness concerns about the biases towards certain protected or sensitive group of people when addressing the target tasks.
This paper studies the debiasing problem in the context of image classification tasks.
arXiv Detail & Related papers (2020-07-27T15:17:52Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
We consider fairness in the integration component of data management.
We propose an approach to identify a sub-collection of features that ensure the fairness of the dataset.
arXiv Detail & Related papers (2020-06-10T20:20:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.