A Food Recommender System in Academic Environments Based on Machine
Learning Models
- URL: http://arxiv.org/abs/2306.16528v1
- Date: Mon, 26 Jun 2023 11:43:37 GMT
- Title: A Food Recommender System in Academic Environments Based on Machine
Learning Models
- Authors: Abolfazl Ajami, Babak Teimourpour
- Abstract summary: Machine learning models such as Decision Tree, k-Nearest Neighbors (kNN), AdaBoost, and Bagging were investigated in the field of food recommender systems.
The AdaBoost model has the highest performance in terms of accuracy with a rate of 73.70 percent.
- Score: 3.42658286826597
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Background: People's health depends on the use of proper diet as an important
factor. Today, with the increasing mechanization of people's lives, proper
eating habits and behaviors are neglected. On the other hand, food
recommendations in the field of health have also tried to deal with this issue.
But with the introduction of the Western nutrition style and the advancement of
Western chemical medicine, many issues have emerged in the field of disease
treatment and nutrition. Recent advances in technology and the use of
artificial intelligence methods in information systems have led to the creation
of recommender systems in order to improve people's health. Methods: A hybrid
recommender system including, collaborative filtering, content-based, and
knowledge-based models was used. Machine learning models such as Decision Tree,
k-Nearest Neighbors (kNN), AdaBoost, and Bagging were investigated in the field
of food recommender systems on 2519 students in the nutrition management system
of a university. Student information including profile information for basal
metabolic rate, student reservation records, and selected diet type is received
online. Among the 15 features collected and after consulting nutrition experts,
the most effective features are selected through feature engineering. Using
machine learning models based on energy indicators and food selection history
by students, food from the university menu is recommended to students. Results:
The AdaBoost model has the highest performance in terms of accuracy with a rate
of 73.70 percent. Conclusion: Considering the importance of diet in people's
health, recommender systems are effective in obtaining useful information from
a huge amount of data. Keywords: Recommender system, Food behavior and habits,
Machine learning, Classification
Related papers
- NUTRIVISION: A System for Automatic Diet Management in Smart Healthcare [0.0]
NutriVision combines smart healthcare with computer vision and machine learning to address the challenges of nutrition and dietary management.
This paper introduces a novel system that can identify food items, estimate quantities, and provide comprehensive nutritional information.
Through smartphone based image capture, NutriVision delivers instant nutritional data, including macronutrient breakdown, calorie count, and micronutrient details.
arXiv Detail & Related papers (2024-09-30T17:10:25Z) - NutritionVerse-Direct: Exploring Deep Neural Networks for Multitask Nutrition Prediction from Food Images [63.314702537010355]
Self-reporting methods are often inaccurate and suffer from substantial bias.
Recent work has explored using computer vision prediction systems to predict nutritional information from food images.
This paper aims to enhance the efficacy of dietary intake estimation by leveraging various neural network architectures.
arXiv Detail & Related papers (2024-05-13T14:56:55Z) - Image-Based Dietary Assessment: A Healthy Eating Plate Estimation System [0.0]
The nutritional quality of diets has significantly deteriorated over the past two to three decades, a decline often underestimated by the people.
This paper introduces an innovative Image-Based Dietary Assessment system aimed at evaluating the healthiness of meals through image analysis.
Our system employs advanced image segmentation and classification techniques to analyze food items on a plate, assess their proportions, and calculate meal adherence to Harvard's healthy eating recommendations.
arXiv Detail & Related papers (2024-03-02T21:01:01Z) - NutritionVerse: Empirical Study of Various Dietary Intake Estimation Approaches [59.38343165508926]
Accurate dietary intake estimation is critical for informing policies and programs to support healthy eating.
Recent work has focused on using computer vision and machine learning to automatically estimate dietary intake from food images.
We introduce NutritionVerse- Synth, the first large-scale dataset of 84,984 synthetic 2D food images with associated dietary information.
We also collect a real image dataset, NutritionVerse-Real, containing 889 images of 251 dishes to evaluate realism.
arXiv Detail & Related papers (2023-09-14T13:29:41Z) - NutritionVerse-3D: A 3D Food Model Dataset for Nutritional Intake
Estimation [65.47310907481042]
One in four older adults are malnourished.
Machine learning and computer vision show promise of automated nutrition tracking methods of food.
NutritionVerse-3D is a large-scale high-resolution dataset of 105 3D food models.
arXiv Detail & Related papers (2023-04-12T05:27:30Z) - MenuAI: Restaurant Food Recommendation System via a Transformer-based
Deep Learning Model [15.248362664235845]
A novel restaurant food recommendation system is proposed in this paper.
It uses Optical Character Recognition (OCR) technology and a transformer-based deep learning model, Learning to Rank (LTR) model.
Our system is able to rank the food dishes in terms of the input search key (e.g., calorie, protein level)
arXiv Detail & Related papers (2022-10-15T11:45:44Z) - Towards the Creation of a Nutrition and Food Group Based Image Database [58.429385707376554]
We propose a framework to create a nutrition and food group based image database.
We design a protocol for linking food group based food codes in the U.S. Department of Agriculture's (USDA) Food and Nutrient Database for Dietary Studies (FNDDS)
Our proposed method is used to build a nutrition and food group based image database including 16,114 food datasets.
arXiv Detail & Related papers (2022-06-05T02:41:44Z) - Learning Personal Food Preferences via Food Logs Embedding [1.1534313664323634]
We propose a method for learning food preferences from food logs.
Our proposed approach identifies 82% of a user's ten most frequently eaten foods.
arXiv Detail & Related papers (2021-10-29T02:36:24Z) - Investigating Health-Aware Smart-Nudging with Machine Learning to Help
People Pursue Healthier Eating-Habits [12.07862191291072]
We propose three novel nudging technology, the WHO-BubbleSlider, the FSA-ColorCoading, and the DRCI-MLCP, that encourage users to choose healthier recipes.
Results showed that, during the food decision-making process, appropriate healthiness cues make users more likely to click, browse, and choose healthier recipes over less healthy ones.
arXiv Detail & Related papers (2021-10-05T10:56:02Z) - Vision-Based Food Analysis for Automatic Dietary Assessment [49.32348549508578]
This review presents one unified Vision-Based Dietary Assessment (VBDA) framework, which generally consists of three stages: food image analysis, volume estimation and nutrient derivation.
Deep learning makes VBDA gradually move to an end-to-end implementation, which applies food images to a single network to directly estimate the nutrition.
arXiv Detail & Related papers (2021-08-06T05:46:01Z) - Towards Building a Food Knowledge Graph for Internet of Food [66.57235827087092]
We review the evolution of food knowledge organization, from food classification to food to food knowledge graphs.
Food knowledge graphs play an important role in food search and Question Answering (QA), personalized dietary recommendation, food analysis and visualization.
Future directions for food knowledge graphs cover several fields such as multimodal food knowledge graphs and food intelligence.
arXiv Detail & Related papers (2021-07-13T06:26:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.