NUTRIVISION: A System for Automatic Diet Management in Smart Healthcare
- URL: http://arxiv.org/abs/2409.20508v1
- Date: Mon, 30 Sep 2024 17:10:25 GMT
- Title: NUTRIVISION: A System for Automatic Diet Management in Smart Healthcare
- Authors: Madhumita Veeramreddy, Ashok Kumar Pradhan, Swetha Ghanta, Laavanya Rachakonda, Saraju P Mohanty,
- Abstract summary: NutriVision combines smart healthcare with computer vision and machine learning to address the challenges of nutrition and dietary management.
This paper introduces a novel system that can identify food items, estimate quantities, and provide comprehensive nutritional information.
Through smartphone based image capture, NutriVision delivers instant nutritional data, including macronutrient breakdown, calorie count, and micronutrient details.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Maintaining health and fitness through a balanced diet is essential for preventing non communicable diseases such as heart disease, diabetes, and cancer. NutriVision combines smart healthcare with computer vision and machine learning to address the challenges of nutrition and dietary management. This paper introduces a novel system that can identify food items, estimate quantities, and provide comprehensive nutritional information. NutriVision employs the Faster Region based Convolutional Neural Network, a deep learning algorithm that improves object detection by generating region proposals and then classifying those regions, making it highly effective for accurate and fast food identification even in complex and disorganized meal settings. Through smartphone based image capture, NutriVision delivers instant nutritional data, including macronutrient breakdown, calorie count, and micronutrient details. One of the standout features of NutriVision is its personalized nutritional analysis and diet recommendations, which are tailored to each user's dietary preferences, nutritional needs, and health history. By providing customized advice, NutriVision helps users achieve specific health and fitness goals, such as managing dietary restrictions or controlling weight. In addition to offering precise food detection and nutritional assessment, NutriVision supports smarter dietary decisions by integrating user data with recommendations that promote a balanced, healthful diet. This system presents a practical and advanced solution for nutrition management and has the potential to significantly influence how people approach their dietary choices, promoting healthier eating habits and overall well being. This paper discusses the design, performance evaluation, and prospective applications of the NutriVision system.
Related papers
- NutrifyAI: An AI-Powered System for Real-Time Food Detection, Nutritional Analysis, and Personalized Meal Recommendations [14.036206693783198]
This paper introduces a comprehensive system that combines advanced computer vision techniques with nutritional analysis, implemented in a versatile mobile and web application.
Preliminary results showcase the system's effectiveness by providing immediate, accurate dietary insights, with a demonstrated food recognition accuracy of nearly 80%.
arXiv Detail & Related papers (2024-08-20T04:18:53Z) - NutritionVerse-Direct: Exploring Deep Neural Networks for Multitask Nutrition Prediction from Food Images [63.314702537010355]
Self-reporting methods are often inaccurate and suffer from substantial bias.
Recent work has explored using computer vision prediction systems to predict nutritional information from food images.
This paper aims to enhance the efficacy of dietary intake estimation by leveraging various neural network architectures.
arXiv Detail & Related papers (2024-05-13T14:56:55Z) - How Much You Ate? Food Portion Estimation on Spoons [63.611551981684244]
Current image-based food portion estimation algorithms assume that users take images of their meals one or two times.
We introduce an innovative solution that utilizes stationary user-facing cameras to track food items on utensils.
The system is reliable for estimation of nutritional content of liquid-solid heterogeneous mixtures such as soups and stews.
arXiv Detail & Related papers (2024-05-12T00:16:02Z) - NutritionVerse-Real: An Open Access Manually Collected 2D Food Scene
Dataset for Dietary Intake Estimation [68.49526750115429]
We introduce NutritionVerse-Real, an open access manually collected 2D food scene dataset for dietary intake estimation.
The NutritionVerse-Real dataset was created by manually collecting images of food scenes in real life, measuring the weight of every ingredient and computing the associated dietary content of each dish.
arXiv Detail & Related papers (2023-11-20T11:05:20Z) - A Food Recommender System in Academic Environments Based on Machine
Learning Models [3.42658286826597]
Machine learning models such as Decision Tree, k-Nearest Neighbors (kNN), AdaBoost, and Bagging were investigated in the field of food recommender systems.
The AdaBoost model has the highest performance in terms of accuracy with a rate of 73.70 percent.
arXiv Detail & Related papers (2023-06-26T11:43:37Z) - NutritionVerse-3D: A 3D Food Model Dataset for Nutritional Intake
Estimation [65.47310907481042]
One in four older adults are malnourished.
Machine learning and computer vision show promise of automated nutrition tracking methods of food.
NutritionVerse-3D is a large-scale high-resolution dataset of 105 3D food models.
arXiv Detail & Related papers (2023-04-12T05:27:30Z) - Vision-Based Food Analysis for Automatic Dietary Assessment [49.32348549508578]
This review presents one unified Vision-Based Dietary Assessment (VBDA) framework, which generally consists of three stages: food image analysis, volume estimation and nutrient derivation.
Deep learning makes VBDA gradually move to an end-to-end implementation, which applies food images to a single network to directly estimate the nutrition.
arXiv Detail & Related papers (2021-08-06T05:46:01Z) - Towards Building a Food Knowledge Graph for Internet of Food [66.57235827087092]
We review the evolution of food knowledge organization, from food classification to food to food knowledge graphs.
Food knowledge graphs play an important role in food search and Question Answering (QA), personalized dietary recommendation, food analysis and visualization.
Future directions for food knowledge graphs cover several fields such as multimodal food knowledge graphs and food intelligence.
arXiv Detail & Related papers (2021-07-13T06:26:53Z) - Nutrition5k: Towards Automatic Nutritional Understanding of Generic Food [8.597152169571057]
We introduce Nutrition5k, a novel dataset of 5k diverse, real world food dishes with corresponding video streams, depth images, component weights, and high accuracy nutritional content annotation.
We demonstrate the potential of this dataset by training a computer vision algorithm capable of predicting the caloric and macronutrient values of a complex, real world dish at an accuracy that outperforms professional nutritionists.
arXiv Detail & Related papers (2021-03-04T22:59:22Z) - MyFood: A Food Segmentation and Classification System to Aid Nutritional
Monitoring [1.5469452301122173]
The absence of food monitoring has contributed significantly to the increase in the population's weight.
Some solutions have been proposed in computer vision to recognize food images, but few are specialized in nutritional monitoring.
This work presents the development of an intelligent system that classifies and segments food presented in images to help the automatic monitoring of user diet and nutritional intake.
arXiv Detail & Related papers (2020-12-05T17:40:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.