Pareto Optimal Learning for Estimating Large Language Model Errors
- URL: http://arxiv.org/abs/2306.16564v4
- Date: Wed, 22 May 2024 05:58:34 GMT
- Title: Pareto Optimal Learning for Estimating Large Language Model Errors
- Authors: Theodore Zhao, Mu Wei, J. Samuel Preston, Hoifung Poon,
- Abstract summary: Large Language Models (LLMs) have shown impressive abilities in many applications.
We present a method that generates a risk score to estimate the probability of error in an LLM response by integrating multiple sources of information.
- Score: 12.21899680905672
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have shown impressive abilities in many applications. When a concrete and precise answer is desired, it is important to have a quantitative estimation of the potential error rate. However, this can be challenging due to the text-in-text-out nature of generative models. We present a method based on Pareto optimization that generates a risk score to estimate the probability of error in an LLM response by integrating multiple sources of information. We prove theoretically that the error estimator optimized in our framework aligns with the LLM and the information sources in an Pareto optimal manner. Experimental results show that the risk scores estimated by our method are well correlated with the true LLM error rate, thus facilitating error correction. By dynamically combining with prompting strategies such as self-verification and information retrieval, we demonstrate the proposed method can be utilized to increase the performance of an LLM, surpassing state-of-the-art task specific models.
Related papers
- Graph-based Confidence Calibration for Large Language Models [22.394717844099684]
We propose a novel method to develop a well-calibrated confidence estimation model.
We use a weighted graph to represent the consistency among the large language models' responses to a question.
We then train a graph neural network to estimate the probability of correct responses.
arXiv Detail & Related papers (2024-11-03T20:36:44Z) - Provenance: A Light-weight Fact-checker for Retrieval Augmented LLM Generation Output [49.893971654861424]
We present a light-weight approach for detecting nonfactual outputs from retrieval-augmented generation (RAG)
We compute a factuality score that can be thresholded to yield a binary decision.
Our experiments show high area under the ROC curve (AUC) across a wide range of relevant open source datasets.
arXiv Detail & Related papers (2024-11-01T20:44:59Z) - Towards Building a Robust Knowledge Intensive Question Answering Model with Large Language Models [4.4849006637642805]
Presence of noise and errors in retrieved information poses challenges to the robustness of LLMs.
To address the issue of model accuracy decline caused by noisy external information, we propose a data augmentation-based fine-tuning method.
We have conducted experiments on both existing LLMs and our approach, the results are evaluated by GPT-4.
arXiv Detail & Related papers (2024-09-09T07:32:30Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
In this paper, we analyze the MLLM instruction tuning from both theoretical and empirical perspectives.
Inspired by our findings, we propose a measurement to quantitatively evaluate the learning balance.
In addition, we introduce an auxiliary loss regularization method to promote updating of the generation distribution of MLLMs.
arXiv Detail & Related papers (2024-07-29T23:18:55Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
We study how to characterize and predict the truthfulness of texts generated from large language models (LLMs)
We suggest investigating internal activations and quantifying LLM's truthfulness using the local intrinsic dimension (LID) of model activations.
arXiv Detail & Related papers (2024-02-28T04:56:21Z) - Harnessing Large Language Models as Post-hoc Correctors [6.288056740658763]
We show that an LLM can work as a post-hoc corrector to propose corrections for the predictions of an arbitrary Machine Learning model.
We form a contextual knowledge database by incorporating the dataset's label information and the ML model's predictions on the validation dataset.
Our experimental results on text analysis and the challenging molecular predictions show that model improves the performance of a number of models by up to 39%.
arXiv Detail & Related papers (2024-02-20T22:50:41Z) - Querying Easily Flip-flopped Samples for Deep Active Learning [63.62397322172216]
Active learning is a machine learning paradigm that aims to improve the performance of a model by strategically selecting and querying unlabeled data.
One effective selection strategy is to base it on the model's predictive uncertainty, which can be interpreted as a measure of how informative a sample is.
This paper proposes the it least disagree metric (LDM) as the smallest probability of disagreement of the predicted label.
arXiv Detail & Related papers (2024-01-18T08:12:23Z) - Localized Debiased Machine Learning: Efficient Inference on Quantile
Treatment Effects and Beyond [69.83813153444115]
We consider an efficient estimating equation for the (local) quantile treatment effect ((L)QTE) in causal inference.
Debiased machine learning (DML) is a data-splitting approach to estimating high-dimensional nuisances.
We propose localized debiased machine learning (LDML), which avoids this burdensome step.
arXiv Detail & Related papers (2019-12-30T14:42:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.