Graph-based Confidence Calibration for Large Language Models
- URL: http://arxiv.org/abs/2411.02454v1
- Date: Sun, 03 Nov 2024 20:36:44 GMT
- Title: Graph-based Confidence Calibration for Large Language Models
- Authors: Yukun Li, Sijia Wang, Lifu Huang, Li-Ping Liu,
- Abstract summary: We propose a novel method to develop a well-calibrated confidence estimation model.
We use a weighted graph to represent the consistency among the large language models' responses to a question.
We then train a graph neural network to estimate the probability of correct responses.
- Score: 22.394717844099684
- License:
- Abstract: One important approach to improving the reliability of large language models (LLMs) is to provide accurate confidence estimations regarding the correctness of their answers. However, developing a well-calibrated confidence estimation model is challenging, as mistakes made by LLMs can be difficult to detect. We propose a novel method combining the LLM's self-consistency with labeled data and training an auxiliary model to estimate the correctness of its responses to questions. This auxiliary model predicts the correctness of responses based solely on their consistent information. To set up the learning problem, we use a weighted graph to represent the consistency among the LLM's multiple responses to a question. Correctness labels are assigned to these responses based on their similarity to the correct answer. We then train a graph neural network to estimate the probability of correct responses. Experiments demonstrate that the proposed approach substantially outperforms several of the most recent methods in confidence calibration across multiple widely adopted benchmark datasets. Furthermore, the proposed approach significantly improves the generalization capability of confidence calibration on out-of-domain (OOD) data.
Related papers
- Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - Multicalibration for Confidence Scoring in LLMs [6.948522445499497]
This paper proposes the use of "multicalibration" to yield interpretable and reliable confidence scores for outputs generated by large language models (LLMs)
We show how to form groupings for prompt/completion pairs that are correlated with the probability of correctness via two techniques: clustering within an embedding space, and "self-annotation"
We show how our techniques can yield confidence scores that provide substantial improvements in fine-grained measures of both calibration and accuracy compared to existing methods.
arXiv Detail & Related papers (2024-04-06T17:33:37Z) - Calibrating Large Language Models Using Their Generations Only [44.26441565763495]
APRICOT is a method to set confidence targets and train an additional model that predicts an LLM's confidence based on its textual input and output alone.
It is conceptually simple, does not require access to the target model beyond its output, does not interfere with the language generation, and has a multitude of potential usages.
We show how our approach performs competitively in terms of calibration error for white-box and black-box LLMs on closed-book question-answering to detect incorrect LLM answers.
arXiv Detail & Related papers (2024-03-09T17:46:24Z) - Calibrating Large Language Models with Sample Consistency [76.23956851098598]
We explore the potential of deriving confidence from the distribution of multiple randomly sampled model generations, via three measures of consistency.
Results show that consistency-based calibration methods outperform existing post-hoc approaches.
We offer practical guidance on choosing suitable consistency metrics for calibration, tailored to the characteristics of various LMs.
arXiv Detail & Related papers (2024-02-21T16:15:20Z) - Selective Learning: Towards Robust Calibration with Dynamic Regularization [79.92633587914659]
Miscalibration in deep learning refers to there is a discrepancy between the predicted confidence and performance.
We introduce Dynamic Regularization (DReg) which aims to learn what should be learned during training thereby circumventing the confidence adjusting trade-off.
arXiv Detail & Related papers (2024-02-13T11:25:20Z) - Calibrating Long-form Generations from Large Language Models [34.72041258464477]
Large Language Models' (LLMs) confidence scores should align with the actual likelihood of its responses being correct.
Current confidence elicitation methods and calibration metrics rely on a binary true/false assessment of response correctness.
We introduce a unified calibration framework, in which both the correctness of the LLMs' responses and their associated confidence levels are treated as distributions across a range of scores.
arXiv Detail & Related papers (2024-02-09T17:00:32Z) - Binary Classification with Confidence Difference [100.08818204756093]
This paper delves into a novel weakly supervised binary classification problem called confidence-difference (ConfDiff) classification.
We propose a risk-consistent approach to tackle this problem and show that the estimation error bound the optimal convergence rate.
We also introduce a risk correction approach to mitigate overfitting problems, whose consistency and convergence rate are also proven.
arXiv Detail & Related papers (2023-10-09T11:44:50Z) - Improving the Reliability of Large Language Models by Leveraging
Uncertainty-Aware In-Context Learning [76.98542249776257]
Large-scale language models often face the challenge of "hallucination"
We introduce an uncertainty-aware in-context learning framework to empower the model to enhance or reject its output in response to uncertainty.
arXiv Detail & Related papers (2023-10-07T12:06:53Z) - Fast Adaptively Weighted Matrix Factorization for Recommendation with
Implicit Feedback [28.30678887024847]
How to assign confidence weights and how to handle the large number of unobserved data are two key problems for implicit recommendation models.
We propose a fast adaptively weighted matrix factorization (FAWMF) based on variational auto-encoder.
Experiments on real-world datasets demonstrate the superiority of the proposed FAWMF and its learning algorithm fBGD.
arXiv Detail & Related papers (2020-03-04T04:50:44Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.