論文の概要: Transfer Learning with Semi-Supervised Dataset Annotation for Birdcall
Classification
- arxiv url: http://arxiv.org/abs/2306.16760v1
- Date: Thu, 29 Jun 2023 07:56:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-30 14:18:37.153201
- Title: Transfer Learning with Semi-Supervised Dataset Annotation for Birdcall
Classification
- Title(参考訳): バードコール分類のための半教師付きデータセットアノテーションによる転送学習
- Authors: Anthony Miyaguchi, Nathan Zhong, Murilo Gustineli, and Chris Hayduk
- Abstract要約: 本研究では,BirdCLEF 2023コンペティションのための半教師付きデータセットアノテーションを用いたトランスファー学習について検討する。
提案手法では,既存の市販モデルであるBirdNETとMixITを用いて,コンペティションにおける表現とラベル付けの課題に対処する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present working notes on transfer learning with semi-supervised dataset
annotation for the BirdCLEF 2023 competition, focused on identifying African
bird species in recorded soundscapes. Our approach utilizes existing
off-the-shelf models, BirdNET and MixIT, to address representation and labeling
challenges in the competition. We explore the embedding space learned by
BirdNET and propose a process to derive an annotated dataset for supervised
learning. Our experiments involve various models and feature engineering
approaches to maximize performance on the competition leaderboard. The results
demonstrate the effectiveness of our approach in classifying bird species and
highlight the potential of transfer learning and semi-supervised dataset
annotation in similar tasks.
- Abstract(参考訳): 本稿では,記録された音環境におけるアフリカ鳥種識別に着目したbirdclef 2023コンペティションにおいて,半教師付きデータセットアノテーションを用いたトランスファー学習について検討する。
提案手法では,既存の市販モデルであるBirdNETとMixITを用いて,競争における表現とラベルの課題に対処する。
birdnetが学習した埋め込み空間を探索し,教師付き学習のための注釈付きデータセットを導出するプロセスを提案する。
我々の実験は、競争リーダーボードの性能を最大化するための様々なモデルと特徴工学的アプローチを含む。
本研究は,鳥類種を分類する手法の有効性を示し,同様のタスクにおける伝達学習と半教師付きデータセットアノテーションの可能性を強調した。
関連論文リスト
- Training Spatial-Frequency Visual Prompts and Probabilistic Clusters for Accurate Black-Box Transfer Learning [35.72926400167876]
そこで本研究では,ブラックボックス環境における視覚認識モデルのためのパラメータ効率変換学習フレームワークを提案する。
実験では,広範囲な視覚認識データセットにまたがる数ショットの移動学習環境において,優れた性能を示す。
論文 参考訳(メタデータ) (2024-08-15T05:35:52Z) - SmurfCat at SemEval-2024 Task 6: Leveraging Synthetic Data for Hallucination Detection [51.99159169107426]
本稿では,SemEval-2024幻覚検出タスクのための新しいシステムを提案する。
我々の調査は、モデル予測と基準基準を比較するための様々な戦略にまたがっている。
強力なパフォーマンス指標を示す3つの異なる方法を紹介します。
論文 参考訳(メタデータ) (2024-04-09T09:03:44Z) - Active Learning-Based Species Range Estimation [20.422188189640053]
そこで本研究では,地上観測の限られた数から,種の地理的範囲を効率的に推定するための,新しいアクティブラーニング手法を提案する。
弱教師付きコミュニティで収集された観測データに基づいて訓練されたモデルを用いて,この候補範囲の集合を生成することができることを示す。
提案手法の詳細な評価を行い,1000種に対する専門家由来の範囲を含む評価データセットを用いて,既存のアクティブラーニング手法と比較した。
論文 参考訳(メタデータ) (2023-11-03T17:45:18Z) - BirdSAT: Cross-View Contrastive Masked Autoencoders for Bird Species
Classification and Mapping [22.30038765017189]
本稿では,世界中の鳥類の詳細な分類と生態地図作成に有用なメタデータ認識型自己教師型学習(SSL)フレームワークを提案する。
当社のフレームワークは,コントラスト学習(CL)とMasked Image Modeling(MIM)の2つのSSL戦略を統合するとともに,鳥の地上レベルの画像にメタデータを付加した埋め込み空間を充実させる。
本研究では,小粒度の視覚的分類(FGVC)とクロスモーダル検索(クロスモーダル検索)という2つの下流課題に基づいて,鳥の細粒度・地理的に条件付けられた特徴を学習できることを実証した。
論文 参考訳(メタデータ) (2023-10-29T22:08:00Z) - On the Trade-off of Intra-/Inter-class Diversity for Supervised
Pre-training [72.8087629914444]
教師付き事前学習データセットのクラス内多様性(クラス毎のサンプル数)とクラス間多様性(クラス数)とのトレードオフの影響について検討した。
トレーニング前のデータセットのサイズが固定された場合、最高のダウンストリームのパフォーマンスは、クラス内/クラス間の多様性のバランスがとれる。
論文 参考訳(メタデータ) (2023-05-20T16:23:50Z) - INoD: Injected Noise Discriminator for Self-Supervised Representation
Learning in Agricultural Fields [6.891600948991265]
Injected Noise Discriminator (INoD) を提案する。
INoDは、畳み込みエンコーディング中に2つの非結合データセットからフィーチャーマップをインターリーブし、結果のフィーチャーマップのデータセットアフィリエイトをプレテキストタスクとして予測する。
提案手法により、ネットワークは、あるデータセットで見られるオブジェクトの無意味な表現を学習し、解離したデータセットの類似した特徴と合わせて観察することができる。
論文 参考訳(メタデータ) (2023-03-31T14:46:31Z) - Linking data separation, visual separation, and classifier performance
using pseudo-labeling by contrastive learning [125.99533416395765]
最終分類器の性能は、潜在空間に存在するデータ分離と、射影に存在する視覚的分離に依存すると論じる。
本研究は,ヒト腸管寄生虫の5つの現実的課題の画像データセットを1%の教師付きサンプルで分類し,その結果を実証する。
論文 参考訳(メタデータ) (2023-02-06T10:01:38Z) - Beyond Transfer Learning: Co-finetuning for Action Localisation [64.07196901012153]
同時に、複数のアップストリームとダウンストリームのタスクで1つのモデルをトレーニングする。
共ファインタニングは、同じデータ量を使用する場合、従来のトランスファーラーニングよりも優れていることを示す。
さらに、複数のアップストリームデータセットへのアプローチを簡単に拡張して、パフォーマンスをさらに向上する方法も示しています。
論文 参考訳(メタデータ) (2022-07-08T10:25:47Z) - An empirical investigation into audio pipeline approaches for
classifying bird species [0.9158130615768508]
本論文は,鳥類種のモニタリングに適した音声分類パイプラインの側面について検討する。
従来のディープニューラルネットワーク(DNN)の有効性を探求するアプローチと、畳み込みレイヤを利用するアプローチの2つを考慮する。
論文 参考訳(メタデータ) (2021-08-10T05:02:38Z) - Learning Invariant Representations across Domains and Tasks [81.30046935430791]
本稿では,この教師なしタスク転送問題を解決するための新しいタスク適応ネットワーク(tan)を提案する。
ドメイン・アドバーサル・トレーニングによる伝達可能な機能を学習することに加えて、学習から学習への戦略を用いてタスクの意味を適応させる新しいタスク・セマンティクス・アダプタを提案する。
TANは最近の強いベースラインに比べてリコールとF1スコアを5.0%と7.8%大きく向上させた。
論文 参考訳(メタデータ) (2021-03-03T11:18:43Z) - Semi-Automatic Data Annotation guided by Feature Space Projection [117.9296191012968]
本稿では,適切な特徴空間投影と半教師付きラベル推定に基づく半自動データアノテーション手法を提案する。
MNISTデータセットとヒト腸内寄生虫の胎児不純物の有無による画像を用いて本手法の有効性を検証した。
この結果から,人間と機械の相補的能力を組み合わせた視覚分析ツールの付加価値が,より効果的な機械学習に有効であることが示唆された。
論文 参考訳(メタデータ) (2020-07-27T17:03:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。