論文の概要: Integrating Large Language Model for Improved Causal Discovery
- arxiv url: http://arxiv.org/abs/2306.16902v2
- Date: Tue, 26 Aug 2025 11:41:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-27 17:42:38.386184
- Title: Integrating Large Language Model for Improved Causal Discovery
- Title(参考訳): 因果発見を改善するための大規模言語モデルの統合
- Authors: Taiyu Ban, Lyuzhou Chen, Derui Lyu, Xiangyu Wang, Qinrui Zhu, Qiang Tu, Huanhuan Chen,
- Abstract要約: 大規模言語モデル(LLM)は、様々なドメイン固有のシナリオの因果解析に使われてきた。
エラー耐性 LLM による因果発見フレームワークを提案する。
- 参考スコア(独自算出の注目度): 25.50313039584238
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recovering the structure of causal graphical models from observational data is an essential yet challenging task for causal discovery in scientific scenarios. Domain-specific causal discovery usually relies on expert validation or prior analysis to improve the reliability of recovered causality, which is yet limited by the scarcity of expert resources. Recently, Large Language Models (LLM) have been used for causal analysis across various domain-specific scenarios, suggesting its potential as autonomous expert roles in guiding data-based structure learning. However, integrating LLMs into causal discovery faces challenges due to inaccuracies in LLM-based reasoning on revealing the actual causal structure. To address this challenge, we propose an error-tolerant LLM-driven causal discovery framework. The error-tolerant mechanism is designed three-fold with sufficient consideration on potential inaccuracies. In the LLM-based reasoning process, an accuracy-oriented prompting strategy restricts causal analysis to a reliable range. Next, a knowledge-to-structure transition aligns LLM-derived causal statements with structural causal interactions. In the structure learning process, the goodness-of-fit to data and adherence to LLM-derived priors are balanced to further address prior inaccuracies. Evaluation of eight real-world causal structures demonstrates the efficacy of our LLM-driven approach in improving data-based causal discovery, along with its robustness to inaccurate LLM-derived priors. Codes are available at https://github.com/tyMadara/LLM-CD.
- Abstract(参考訳): 観測データから因果的グラフィカルモデルの構造を復元することは、科学的シナリオにおける因果的発見に不可欠な課題である。
ドメイン固有の因果発見は、回復された因果関係の信頼性を改善するために、専門家の検証や事前分析に頼っているが、専門家のリソース不足によって制限されている。
近年、Large Language Models (LLM) は様々なドメイン固有のシナリオの因果解析に使われており、データに基づく構造学習の指導における自律的な専門家の役割としての可能性を示している。
しかし、LCMを因果発見に組み込むことは、実際の因果構造を明らかにする上でのLSMに基づく推論の不正確さによる課題に直面している。
この課題に対処するために, 誤り耐性 LLM による因果発見フレームワークを提案する。
エラー耐性機構は、潜在的な不正確さを十分に考慮して3倍に設計されている。
LLMに基づく推論プロセスでは、精度指向のプロンプト戦略が因果解析を信頼できる範囲に制限する。
次に、知識から構造への遷移は、LLMに由来する因果関係と構造的因果関係を一致させる。
構造学習プロセスでは、データに適合する良さと、LCMから派生した事前の順守をバランスさせて、事前の不正確性に対処する。
8つの実世界の因果構造の評価は、データに基づく因果発見の改善におけるLLMによるアプローチの有効性と、その不正確なLLM起源の先駆者に対する堅牢性を示す。
コードはhttps://github.com/tyMadara/LLM-CDで入手できる。
関連論文リスト
- Can Large Language Models Help Experimental Design for Causal Discovery? [94.66802142727883]
Large Language Model Guided Intervention Targeting (LeGIT) は、LLMを効果的に組み込んだ堅牢なフレームワークであり、因果発見のための介入のための既存の数値的アプローチを強化する。
LeGITは、既存の方法よりも大幅な改善と堅牢性を示し、人間を超越している。
論文 参考訳(メタデータ) (2025-03-03T03:43:05Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTRは、ヒトに適応し、多目的な意思決定を提供する新しいニューロシンボリックアーキテクチャである。
我々のフレームワークは、ACT-Rの内部決定過程の知識を潜在神経表現として抽出し、組み込む。
デザイン・フォー・マニュファクチャリング・タスクに関する我々の実験は、タスク性能の向上と基礎的意思決定能力の向上を両立させたものである。
論文 参考訳(メタデータ) (2024-08-17T11:49:53Z) - From Pre-training Corpora to Large Language Models: What Factors Influence LLM Performance in Causal Discovery Tasks? [51.42906577386907]
本研究では,因果発見タスクにおけるLarge Language Models(LLM)の性能に影響を与える要因について検討する。
因果関係の頻度が高いことは、より良いモデル性能と相関し、トレーニング中に因果関係の情報に広範囲に暴露することで、因果関係の発見能力を高めることを示唆している。
論文 参考訳(メタデータ) (2024-07-29T01:45:05Z) - ALCM: Autonomous LLM-Augmented Causal Discovery Framework [2.1470800327528843]
我々は、データ駆動因果探索アルゴリズムと大規模言語モデルとを相乗化するために、ALCM(Autonomous LLM-Augmented Causal Discovery Framework)という新しいフレームワークを導入する。
ALCMは、因果構造学習(英語版)、因果ラッパー(英語版)、LLM駆動因果リファクター(英語版)の3つの統合的な構成要素から構成される。
我々は、よく知られた7つのデータセットに2つのデモを実装することで、ALCMフレームワークを評価する。
論文 参考訳(メタデータ) (2024-05-02T21:27:45Z) - CausalBench: A Comprehensive Benchmark for Causal Learning Capability of LLMs [27.362012903540492]
因果関係を理解する能力は、大言語モデル(LLM)の出力説明と反実的推論の能力に大きな影響を及ぼす。
因果関係を理解する能力は、大言語モデル(LLM)の出力説明と反実的推論の能力に大きな影響を及ぼす。
論文 参考訳(メタデータ) (2024-04-09T14:40:08Z) - Causal Graph Discovery with Retrieval-Augmented Generation based Large Language Models [23.438388321411693]
因果グラフの回復は、伝統的に統計的推定に基づく手法や、興味のある変数に関する個人の知識に基づいて行われる。
本稿では,大言語モデル(LLM)を利用して,一般的な因果グラフ復元タスクにおける因果関係を推定する手法を提案する。
論文 参考訳(メタデータ) (2024-02-23T13:02:10Z) - Large Language Models for Causal Discovery: Current Landscape and Future Directions [5.540272236593385]
因果発見(CD)とLarge Language Models(LLM)は、人工知能のトランスフォーメーション分野として登場した。
本研究は, テキストからの因果的抽出, ドメイン知識の統計的手法への統合, 因果的構造の改良の3つの重要な側面において, LLMがCDをどう変えるかを検討する。
論文 参考訳(メタデータ) (2024-02-16T20:48:53Z) - Discovery of the Hidden World with Large Language Models [95.58823685009727]
本稿では,大きな言語モデル(LLM)を導入してギャップを埋めるCausal representatiOn AssistanT(COAT)を提案する。
LLMは世界中の大規模な観測に基づいて訓練されており、構造化されていないデータから重要な情報を抽出する優れた能力を示している。
COATはまた、特定変数間の因果関係を見つけるためにCDを採用し、提案された要因を反復的に洗練するためにLSMにフィードバックを提供する。
論文 参考訳(メタデータ) (2024-02-06T12:18:54Z) - Is Knowledge All Large Language Models Needed for Causal Reasoning? [11.476877330365664]
本稿では,大規模言語モデル(LLM)の因果推論について,人工知能の進化における解釈可能性と信頼性を高めるために検討する。
本稿では,do-operativesを利用した新たな因果帰属モデルを提案する。
論文 参考訳(メタデータ) (2023-12-30T04:51:46Z) - Survey on Factuality in Large Language Models: Knowledge, Retrieval and
Domain-Specificity [61.54815512469125]
本調査は,大規模言語モデル(LLM)における事実性の重要課題に対処する。
LLMが様々な領域にまたがる応用を見出すにつれ、その出力の信頼性と正確性は重要となる。
論文 参考訳(メタデータ) (2023-10-11T14:18:03Z) - Investigating the Factual Knowledge Boundary of Large Language Models with Retrieval Augmentation [109.8527403904657]
大規模言語モデル(LLM)は,その知識に対する信頼度が低く,内部知識と外部知識の衝突をうまく扱えないことを示す。
検索の強化は、LLMの知識境界に対する認識を高める効果的なアプローチであることが証明されている。
本稿では,文書を動的に活用するための簡易な手法を提案する。
論文 参考訳(メタデータ) (2023-07-20T16:46:10Z) - On the Risk of Misinformation Pollution with Large Language Models [127.1107824751703]
本稿では,現代大規模言語モデル (LLM) の誤用の可能性について検討する。
本研究は, LLMが効果的な誤情報発生器として機能し, DOQAシステムの性能が著しく低下することを明らかにする。
論文 参考訳(メタデータ) (2023-05-23T04:10:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。