論文の概要: Investigating the Factual Knowledge Boundary of Large Language Models with Retrieval Augmentation
- arxiv url: http://arxiv.org/abs/2307.11019v3
- Date: Tue, 19 Nov 2024 05:35:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-20 13:34:12.997170
- Title: Investigating the Factual Knowledge Boundary of Large Language Models with Retrieval Augmentation
- Title(参考訳): 検索拡張による大規模言語モデルのファクチュアル知識境界の検討
- Authors: Ruiyang Ren, Yuhao Wang, Yingqi Qu, Wayne Xin Zhao, Jing Liu, Hao Tian, Hua Wu, Ji-Rong Wen, Haifeng Wang,
- Abstract要約: 大規模言語モデル(LLM)は,その知識に対する信頼度が低く,内部知識と外部知識の衝突をうまく扱えないことを示す。
検索の強化は、LLMの知識境界に対する認識を高める効果的なアプローチであることが証明されている。
本稿では,文書を動的に活用するための簡易な手法を提案する。
- 参考スコア(独自算出の注目度): 109.8527403904657
- License:
- Abstract: Large language models (LLMs) have shown impressive prowess in solving a wide range of tasks with world knowledge. However, it remains unclear how well LLMs are able to perceive their factual knowledge boundaries, particularly under retrieval augmentation settings. In this study, we present the first analysis on the factual knowledge boundaries of LLMs and how retrieval augmentation affects LLMs on open-domain question answering (QA), with a bunch of important findings. Specifically, we focus on three research questions and analyze them by examining QA, priori judgement and posteriori judgement capabilities of LLMs. We show evidence that LLMs possess unwavering confidence in their knowledge and cannot handle the conflict between internal and external knowledge well. Furthermore, retrieval augmentation proves to be an effective approach in enhancing LLMs' awareness of knowledge boundaries. We further conduct thorough experiments to examine how different factors affect LLMs and propose a simple method to dynamically utilize supporting documents with our judgement strategy. Additionally, we find that the relevance between the supporting documents and the questions significantly impacts LLMs' QA and judgemental capabilities. The code to reproduce this work is available at https://github.com/RUCAIBox/LLM-Knowledge-Boundary.
- Abstract(参考訳): 大規模言語モデル(LLM)は、世界的知識で幅広いタスクを解く上で、素晴らしい成果を上げている。
しかし、LLMが実際の知識境界をどの程度認識できるかは、特に検索強化設定下では不明確である。
本研究では,LLMの事実的知識境界と検索強化がオープンドメイン質問応答(QA)にどう影響するかを,多くの重要な知見とともに初めて分析する。
具体的には,3つの研究課題に焦点をあて,QA,優先判断,後部判断能力について調べて分析する。
我々は, LLM が自己の知識に揺らぎのない自信を持っていることを示すとともに, 内部知識と外部知識の衝突をうまく扱えないことを示す。
さらに,LLMの知識境界に対する意識を高める手法として,検索強化が有効であることが証明された。
さらに,異なる要因がLCMにどう影響するかを調べるための徹底的な実験を行い,我々の判断戦略で文書を動的に活用する簡単な方法を提案する。
さらに,支援文書と疑問との関係がLLMのQAと判断能力に大きく影響していることが判明した。
この作業を再現するコードはhttps://github.com/RUCAIBox/LLM-Knowledge-Boundaryで公開されている。
関連論文リスト
- Prompting Large Language Models with Knowledge Graphs for Question Answering Involving Long-tail Facts [50.06633829833144]
大規模言語モデル(LLM)は、様々なNLPタスクを実行するのに効果的であるが、広範囲の現実世界の知識を必要とするタスクを扱うのに苦労する。
我々は,関連する疑問に答えるために,長期的事実の知識を必要とするベンチマークを提案する。
実験の結果,LLMだけでこれらの疑問に答えるのに苦労していることが明らかとなった。
論文 参考訳(メタデータ) (2024-05-10T15:10:20Z) - Small Models, Big Insights: Leveraging Slim Proxy Models To Decide When and What to Retrieve for LLMs [60.40396361115776]
本稿では,スリムプロキシモデルを用いた大規模言語モデル (LLM) における知識不足を検知する新しい協調手法であるSlimPLMを提案する。
パラメータがはるかに少ないプロキシモデルを採用し、回答を回答としています。
ヒューリスティックな回答は、LLM内の既知の未知の知識と同様に、ユーザの質問に答えるために必要な知識を予測するのに使用される。
論文 参考訳(メタデータ) (2024-02-19T11:11:08Z) - When Do LLMs Need Retrieval Augmentation? Mitigating LLMs' Overconfidence Helps Retrieval Augmentation [66.01754585188739]
大規模言語モデル(LLM)は、特定の知識を持っていないことを知るのが困難であることが判明した。
Retrieval Augmentation (RA)はLLMの幻覚を緩和するために広く研究されている。
本稿では,LLMの知識境界に対する認識を高めるためのいくつかの手法を提案する。
論文 参考訳(メタデータ) (2024-02-18T04:57:19Z) - Don't Hallucinate, Abstain: Identifying LLM Knowledge Gaps via Multi-LLM Collaboration [39.603649838876294]
本研究では,LLMの知識ギャップを同定し,知識ギャップが存在する場合の質問への回答を控えるアプローチについて検討する。
保留集合上での自己回帰と過度信頼の失敗により、我々は2つの新しいアプローチを提案する。
論文 参考訳(メタデータ) (2024-02-01T06:11:49Z) - KnowledgeNavigator: Leveraging Large Language Models for Enhanced
Reasoning over Knowledge Graph [11.808990571175269]
大規模言語モデル(LLM)は、その強力な自然言語理解とゼロショット能力によって、様々な下流タスクにおいて優れたパフォーマンスを達成しているが、LLMは依然として知識制限に悩まされている。
本稿では,知識グラフから外部知識を効率的に正確に検索し,これらの課題に対処する新しいフレームワークであるKnowledgeNavigatorを提案する。
我々は,複数のKGQAベンチマーク上でKnowledgeNavigatorを評価し,そのフレームワークの有効性と一般化を実証した。
論文 参考訳(メタデータ) (2023-12-26T04:22:56Z) - RECALL: A Benchmark for LLMs Robustness against External Counterfactual
Knowledge [69.79676144482792]
本研究の目的は,LLMが外部知識から信頼できる情報を識別する能力を評価することである。
本ベンチマークは,質問応答とテキスト生成という2つのタスクから構成される。
論文 参考訳(メタデータ) (2023-11-14T13:24:19Z) - Self-Knowledge Guided Retrieval Augmentation for Large Language Models [59.771098292611846]
大規模言語モデル(LLM)はタスク固有の微調整なしで優れた性能を示す。
検索に基づく手法は、非パラメトリックな世界知識を提供し、質問応答のようなタスクのパフォーマンスを向上させることができる。
SKR(Self-Knowledge guided Retrieval augmentation)は、LLMがこれまで遭遇した質問を参照できるようにする、シンプルで効果的な方法である。
論文 参考訳(メタデータ) (2023-10-08T04:22:33Z) - When Giant Language Brains Just Aren't Enough! Domain Pizzazz with
Knowledge Sparkle Dust [15.484175299150904]
本稿では,大規模言語モデルの実践的ユースケースへの適応におけるギャップを埋めることを目的とした経験的分析を提案する。
本研究は, 推論の課題によるケーススタディとして, 保険の質問応答(QA)タスクを選択する。
本課題に基づいて,保険政策ルールブックやDBPediaから抽出した付加的な知識により,LLMに依存した新たなモデルを設計する。
論文 参考訳(メタデータ) (2023-05-12T03:49:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。