論文の概要: RECAP-KG: Mining Knowledge Graphs from Raw GP Notes for Remote COVID-19
Assessment in Primary Care
- arxiv url: http://arxiv.org/abs/2306.17175v1
- Date: Sat, 17 Jun 2023 23:35:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-09 14:19:42.176587
- Title: RECAP-KG: Mining Knowledge Graphs from Raw GP Notes for Remote COVID-19
Assessment in Primary Care
- Title(参考訳): RECAP-KG:プライマリケアにおけるリモートCOVID-19評価のための生GPノートからの知識グラフのマイニング
- Authors: Rakhilya Lee Mekhtieva, Brandon Forbes, Dalal Alrajeh, Brendan
Delaney, Alessandra Russo
- Abstract要約: 本稿では,患者相談の前後に書かれた生のGP医療ノートから知識グラフ構築を行うフレームワークを提案する。
私たちの知識グラフには、既存の患者の症状、その持続時間、重症度に関する情報が含まれています。
本フレームワークを英国における新型コロナウイルス患者の相談ノートに適用する。
- 参考スコア(独自算出の注目度): 61.727762775890646
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Clinical decision-making is a fundamental stage in delivering appropriate
care to patients. In recent years several decision-making systems designed to
aid the clinician in this process have been developed. However, technical
solutions currently in use are based on simple regression models and are only
able to take into account simple pre-defined multiple-choice features, such as
patient age, pre-existing conditions, smoker status, etc. One particular source
of patient data, that available decision-making systems are incapable of
processing is the collection of patient consultation GP notes. These contain
crucial signs and symptoms - the information used by clinicians in order to
make a final decision and direct the patient to the appropriate care.
Extracting information from GP notes is a technically challenging problem, as
they tend to include abbreviations, typos, and incomplete sentences.
This paper addresses this open challenge. We present a framework that
performs knowledge graph construction from raw GP medical notes written during
or after patient consultations. By relying on support phrases mined from the
SNOMED ontology, as well as predefined supported facts from values used in the
RECAP (REmote COVID-19 Assessment in Primary Care) patient risk prediction
tool, our graph generative framework is able to extract structured knowledge
graphs from the highly unstructured and inconsistent format that consultation
notes are written in. Our knowledge graphs include information about existing
patient symptoms, their duration, and their severity.
We apply our framework to consultation notes of COVID-19 patients in the UK
COVID-19 Clinical Assesment Servcie (CCAS) patient dataset. We provide a
quantitative evaluation of the performance of our framework, demonstrating that
our approach has better accuracy than traditional NLP methods when answering
questions about patients.
- Abstract(参考訳): 臨床意思決定は患者に適切なケアを提供するための基本的な段階である。
近年,このプロセスで臨床医を支援するための意思決定システムが開発されている。
しかし、現在使われている技術的解決策は、単純な回帰モデルに基づいており、患者年齢、既存条件、喫煙者ステータスなど、単純な事前定義された多重選択機能しか考慮できない。
患者データの特定のソースとして、利用可能な意思決定システムが処理できないのは、患者相談GPノートの収集である。
これらは、最終決定を下し、患者を適切なケアに導くために臨床医が使用する重要な兆候と症状を含んでいる。
GPノートから情報を抽出することは技術的に難しい問題であり、省略やタイポ、不完全文を含む傾向がある。
このオープンな課題に対処する。
本稿では,患者相談の前後に書かれた生のGP医療ノートから知識グラフ構築を行うフレームワークを提案する。
SNOMEDオントロジーから抽出したサポートフレーズや、RECAP(REmote COVID-19 Assessment in Primary Care)患者リスク予測ツールで用いられる値から予め定義されたサポート事実を頼りに、我々のグラフ生成フレームワークは、コンサルテーションノートが書かれた高度に構造化されていない一貫性のないフォーマットから構造化知識グラフを抽出することができる。
私たちの知識グラフには、既存の患者の症状、持続時間、重症度に関する情報が含まれています。
本フレームワークは,英国におけるCOVID-19クリニカルアセスメント・サーベイ(CCAS)患者データセットのコンサルテーションノートに応用する。
提案手法は従来のNLP法よりも精度が高く,患者に対する質問に答える上で有効であることを示す。
関連論文リスト
- Adaptive questionnaires for facilitating patient data entry in clinical
decision support systems: Methods and application to STOPP/START v2 [1.8374319565577155]
本稿では,適応型アンケートを用いて患者データ入力を簡略化する独自のソリューションを提案する。
ルールに基づく意思決定支援システムを考えると,臨床ルールを表示規則に翻訳する手法を考案した。
アンケート調査の結果, 臨床症状の約3分の2減らすことができることがわかった。
論文 参考訳(メタデータ) (2023-09-19T07:59:13Z) - DKINet: Medication Recommendation via Domain Knowledge Informed Deep Learning [12.609882335746859]
医療勧告は、医療の根本的かつ重要な分野である。
これまでの研究は主に電子健康記録から患者の表現を学ぶことに焦点を当ててきた。
本稿では,複雑な臨床症状とドメイン知識の効果的な統合に対処する知識注入モジュールを提案する。
論文 参考訳(メタデータ) (2023-05-31T07:22:15Z) - Semi-self-supervised Automated ICD Coding [2.449909275410288]
臨床用テキストノート (CTN) には、医師が患者を診察しインタビューする際に、構造化されていない自由テキスト形式で書かれた推論プロセスが含まれている。
本稿では,アイスランドのCTNの希少な注釈付きデータセットを,機械学習型計算で半自己管理的に拡張する方法を提案する。
我々は、注釈付きCTNの小さなセットでニューラルネットワークをトレーニングし、アノテーションなしCTNのセットから臨床特徴を抽出する。
論文 参考訳(メタデータ) (2022-05-20T11:12:54Z) - Predicting Patient Readmission Risk from Medical Text via Knowledge
Graph Enhanced Multiview Graph Convolution [67.72545656557858]
本稿では,電子健康記録の医用テキストを予測に用いる新しい手法を提案する。
外部知識グラフによって強化された多視点グラフを有する患者の退院サマリーを表現している。
実験により,本手法の有効性が証明され,最先端の性能が得られた。
論文 参考訳(メタデータ) (2021-12-19T01:45:57Z) - Optimal discharge of patients from intensive care via a data-driven
policy learning framework [58.720142291102135]
退院課題は、退院期間の短縮と退院決定後の退院や死亡のリスクとの不確実なトレードオフに対処することが重要である。
本研究は、このトレードオフを捉えるためのエンドツーエンドの汎用フレームワークを導入し、最適放電タイミング決定を推奨する。
データ駆動型アプローチは、患者の生理的状態を捉えた同種で離散的な状態空間表現を導出するために用いられる。
論文 参考訳(メタデータ) (2021-12-17T04:39:33Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - SmartTriage: A system for personalized patient data capture,
documentation generation, and decision support [9.09817311390571]
我々は,電子カルテ(EMR)との緊密な双方向統合を通じて,従来の症状チェックを超える機械学習支援システムであるSmartTriageを開発した。
SmartTriageは、患者の主訴を自由テキストエントリから識別し、関連する症状学を得るために一連の個別の質問を行う。
患者固有のデータは、詳細なICD-10-CMコード、薬品、検査、画像の順序を予測するために使用される。
論文 参考訳(メタデータ) (2020-10-19T22:45:27Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
本稿では,患者の医療旅行におけるコンテキスト依存と時間的関係を捉える,新たな自己注意機構を提案する。
エンド・ツー・エンドの双方向時間エンコーダネットワーク(BiteNet)が患者の旅路の表現を学習する。
実世界のEHRデータセットを用いた2つの教師付き予測と2つの教師なしクラスタリングタスクにおける手法の有効性を評価した。
論文 参考訳(メタデータ) (2020-09-24T00:42:36Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
新型コロナウイルス(COVID-19)のパンデミックは世界中の緊急対応システムに挑戦している。
本研究は, 症状患者の血液検査データから得られた機械学習モデルについて述べる。
提案されたモデルでは、新型コロナウイルスqRT-PCRの結果を、高い精度、感度、特異性で症状のある個人に予測することができる。
論文 参考訳(メタデータ) (2020-05-10T01:45:03Z) - A Corpus for Detecting High-Context Medical Conditions in Intensive Care
Patient Notes Focusing on Frequently Readmitted Patients [28.668217175230822]
このデータセットには1102個の放電サマリーと1000個の看護進歩ノートが含まれている。
注釈付き表現型には、非アジェレンス治療、慢性痛、進行/転移性癌、および他の10種類の表現型が含まれる。
このデータセットは、医学、コンピュータ科学、特に医学自然言語処理の分野における学術、産業研究に利用することができる。
論文 参考訳(メタデータ) (2020-03-06T05:56:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。