論文の概要: Towards Personalized Cold-Start Recommendation with Prompts
- arxiv url: http://arxiv.org/abs/2306.17256v3
- Date: Mon, 30 Oct 2023 20:03:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-01 23:15:33.179198
- Title: Towards Personalized Cold-Start Recommendation with Prompts
- Title(参考訳): プロンプトによるパーソナライズドコールドスタート勧告に向けて
- Authors: Xuansheng Wu, Huachi Zhou, Yucheng Shi, Wenlin Yao, Xiao Huang,
Ninghao Liu
- Abstract要約: 本研究では,事前学習型言語モデルの能力を活かした,革新的で効果的なアプローチを提案する。
提案手法は,ユーザプロファイルや項目属性の情報を含む自然言語の感情分析に変換され,迅速な学習によって感情極性が予測される。
私たちの知る限りでは、これはシステムコールドスタートレコメンデーション問題に取り組む最初の研究である。
- 参考スコア(独自算出の注目度): 38.91330250981614
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recommender systems play a crucial role in helping users discover information
that aligns with their interests based on their past behaviors. However,
developing personalized recommendation systems becomes challenging when
historical records of user-item interactions are unavailable, leading to what
is known as the system cold-start recommendation problem. This issue is
particularly prominent in start-up businesses or platforms with insufficient
user engagement history. Previous studies focus on user or item cold-start
scenarios, where systems could make recommendations for new users or items but
are still trained with historical user-item interactions in the same domain,
which cannot solve our problem. To bridge the gap, our research introduces an
innovative and effective approach, capitalizing on the capabilities of
pre-trained language models. We transform the recommendation process into
sentiment analysis of natural languages containing information of user profiles
and item attributes, where the sentiment polarity is predicted with prompt
learning. By harnessing the extensive knowledge housed within language models,
the prediction can be made without historical user-item interaction records. A
benchmark is also introduced to evaluate the proposed method under the
cold-start setting, and the results demonstrate the effectiveness of our
method. To the best of our knowledge, this is the first study to tackle the
system cold-start recommendation problem. The benchmark and implementation of
the method are available at https://github.com/JacksonWuxs/PromptRec.
- Abstract(参考訳): レコメンダシステムは,過去の行動に基づいて,ユーザの興味に沿った情報発見を支援する上で,重要な役割を担っている。
しかし、ユーザとコンテンツのインタラクションの履歴が利用できない場合、パーソナライズドレコメンデーションシステムの開発は困難になり、システムコールドスタートレコメンデーション問題として知られる問題に繋がる。
この問題は、ユーザーエンゲージメントが不十分なスタートアップ企業やプラットフォームで特に顕著である。
従来の研究では、新しいユーザやアイテムを推薦できるが、同じドメイン内の歴史的なユーザとイテムのインタラクションでトレーニングされているため、私たちの問題は解決できない。
このギャップを埋めるため,本研究では,事前学習した言語モデルの能力を活用した革新的かつ効果的なアプローチを提案する。
提案手法は,ユーザプロファイルや項目属性の情報を含む自然言語の感情分析に変換され,迅速な学習によって感情極性が予測される。
言語モデルに格納された広範な知識を利用することで、歴史的ユーザ・イテム相互作用の記録なしで予測を行うことができる。
また,提案手法を冷間開始条件下で評価するためのベンチマークも導入し,本手法の有効性を実証した。
私たちの知る限りでは、システムコールドスタートレコメンデーション問題に取り組む最初の研究である。
メソッドのベンチマークと実装はhttps://github.com/JacksonWuxs/PromptRec.comで公開されている。
関連論文リスト
- Language-Model Prior Overcomes Cold-Start Items [14.370472820496802]
RecSysの成長は、デジタル化と、eコマースやビデオストリーミングなどの分野におけるパーソナライズされたコンテンツの必要性による。
コンテンツベースのレコメンデータやハイブリッドメソッドといったコールドスタート問題の既存のソリューションは、アイテムメタデータを活用してアイテムの類似性を決定する。
本稿では,言語モデル(LM)を用いて項目類似度を推定する,コールドスタートアイテムレコメンデーションのための新しいアプローチを提案する。
論文 参考訳(メタデータ) (2024-11-13T22:45:52Z) - Pre-trained Language Model and Knowledge Distillation for Lightweight Sequential Recommendation [51.25461871988366]
本稿では,事前学習言語モデルと知識蒸留に基づく逐次推薦アルゴリズムを提案する。
提案アルゴリズムは,推薦精度を高め,タイムリーな推薦サービスを提供する。
論文 参考訳(メタデータ) (2024-09-23T08:39:07Z) - Keyword-driven Retrieval-Augmented Large Language Models for Cold-start User Recommendations [5.374800961359305]
コールドスタートユーザレストランレコメンデーションの問題に対処するフレームワークであるKALM4Recを紹介する。
KALM4Recは、候補検索とLLMベースの候補の再ランクの2つの主要な段階で動作する。
Yelpのレストランデータセットを用いて、英語圏の3都市からのユーザレビューを行い、提案したフレームワークが推奨品質を大幅に改善することを示す。
論文 参考訳(メタデータ) (2024-05-30T02:00:03Z) - Large Language Model Augmented Narrative Driven Recommendations [51.77271767160573]
ナラティブ・ドリブン・レコメンデーション(NDR)は、ユーザが好みや文脈を冗長に記述してレコメンデーションを募る情報アクセス問題である。
NDRはモデルのための豊富なトレーニングデータがなく、現在のプラットフォームは一般的にこれらの要求をサポートしない。
大規模言語モデル(LLM)を用いてNDRモデルのトレーニングを行う。
論文 参考訳(メタデータ) (2023-06-04T03:46:45Z) - Recommendation as Instruction Following: A Large Language Model
Empowered Recommendation Approach [83.62750225073341]
我々は、大規模言語モデル(LLM)による指示としてレコメンデーションを考える。
まず、ユーザの好み、意図、タスクフォーム、コンテキストを自然言語で記述するための一般的な命令形式を設計する。
そして、39の命令テンプレートを手動で設計し、大量のユーザ個人化された命令データを自動的に生成する。
論文 参考訳(メタデータ) (2023-05-11T17:39:07Z) - Chain of Hindsight Aligns Language Models with Feedback [62.68665658130472]
我々は,その極性に関係なく,任意の形式のフィードバックから学習し,最適化が容易な新しい手法であるChain of Hindsightを提案する。
我々は、あらゆる種類のフィードバックを文のシーケンスに変換し、それをモデルを微調整するために使用する。
そうすることで、モデルはフィードバックに基づいて出力を生成するように訓練され、負の属性やエラーを特定し修正する。
論文 参考訳(メタデータ) (2023-02-06T10:28:16Z) - GPatch: Patching Graph Neural Networks for Cold-Start Recommendations [20.326139541161194]
コールドスタートはレコメンデータシステムにおいて不可欠で永続的な問題です。
最先端のソリューションは、コールドスタートと既存のユーザ/イテムの両方のためのハイブリッドモデルのトレーニングに依存しています。
本稿では,2つの別個のコンポーネントを含むGNNベースのフレームワーク(GPatch)を提案する。
論文 参考訳(メタデータ) (2022-09-25T13:16:39Z) - Learning to Learn a Cold-start Sequential Recommender [70.5692886883067]
コールドスタート勧告は、現代のオンラインアプリケーションにおいて緊急の問題である。
メタ学習に基づくコールドスタートシーケンシャルレコメンデーションフレームワークMetaCSRを提案する。
MetaCSRは、通常のユーザの行動から共通のパターンを学ぶ能力を持っている。
論文 参考訳(メタデータ) (2021-10-18T08:11:24Z) - Cold-start Sequential Recommendation via Meta Learner [10.491428090228768]
本研究では,逐次推薦における項目コールドスタート問題を軽減するために,メタラーニングに基づくコールドスタートシーケンシャルレコメンデーションフレームワーク,mecosを提案する。
mecosは限られたインタラクションからユーザの好みを効果的に抽出し、ターゲットのコールドスタートアイテムと潜在的なユーザとのマッチングを学ぶ。
論文 参考訳(メタデータ) (2020-12-10T05:23:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。