論文の概要: Designing Stable Neural Networks using Convex Analysis and ODEs
- arxiv url: http://arxiv.org/abs/2306.17332v2
- Date: Thu, 18 Apr 2024 08:37:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-19 20:49:22.946929
- Title: Designing Stable Neural Networks using Convex Analysis and ODEs
- Title(参考訳): 凸解析とODEを用いた安定ニューラルネットワークの設計
- Authors: Ferdia Sherry, Elena Celledoni, Matthias J. Ehrhardt, Davide Murari, Brynjulf Owren, Carola-Bibiane Schönlieb,
- Abstract要約: 提案するResNetスタイルのニューラルネットワークアーキテクチャは,非拡張型(1-Lipschitz)演算子を符号化する。
提案手法は, 逆方向の頑健な画像分類問題, 画像デノイング問題, 逆方向のデブロアリング問題に適用される。
- 参考スコア(独自算出の注目度): 8.398989555267915
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motivated by classical work on the numerical integration of ordinary differential equations we present a ResNet-styled neural network architecture that encodes non-expansive (1-Lipschitz) operators, as long as the spectral norms of the weights are appropriately constrained. This is to be contrasted with the ordinary ResNet architecture which, even if the spectral norms of the weights are constrained, has a Lipschitz constant that, in the worst case, grows exponentially with the depth of the network. Further analysis of the proposed architecture shows that the spectral norms of the weights can be further constrained to ensure that the network is an averaged operator, making it a natural candidate for a learned denoiser in Plug-and-Play algorithms. Using a novel adaptive way of enforcing the spectral norm constraints, we show that, even with these constraints, it is possible to train performant networks. The proposed architecture is applied to the problem of adversarially robust image classification, to image denoising, and finally to the inverse problem of deblurring.
- Abstract(参考訳): 通常の微分方程式の数値積分に関する古典的な研究により、重みのスペクトルノルムが適切に制約されている限り、非膨張(1-Lipschitz)作用素を符号化するResNetスタイルのニューラルネットワークアーキテクチャを提案する。
これは、たとえ重みのスペクトルノルムが制約されているとしても、最悪の場合、ネットワークの深さとともに指数関数的に成長するリプシッツ定数を持つ通常のResNetアーキテクチャとは対照的である。
提案アーキテクチャのさらなる解析により,ネットワークが平均演算子であることを保証するため,重みのスペクトルノルムがさらに制約されることが示され,Plug-and-Playアルゴリズムにおいて学習されたデノイザの自然な候補となる。
スペクトルノルム制約を適応的に強制する新しい手法を用いて,これらの制約を伴っても,性能ネットワークを訓練することは可能であることを示す。
提案手法は, 逆向きに頑健な画像分類問題, 画像のデノイング問題, そして逆のデブロアリング問題に適用される。
関連論文リスト
- Generalization of Scaled Deep ResNets in the Mean-Field Regime [55.77054255101667]
無限深度および広帯域ニューラルネットワークの限界におけるエンスケールResNetについて検討する。
この結果から,遅延学習体制を超えた深層ResNetの一般化能力に関する新たな知見が得られた。
論文 参考訳(メタデータ) (2024-03-14T21:48:00Z) - Robust Training and Verification of Implicit Neural Networks: A
Non-Euclidean Contractive Approach [64.23331120621118]
本稿では,暗黙的ニューラルネットワークのトレーニングとロバスト性検証のための理論的および計算的枠組みを提案する。
組込みネットワークを導入し、組込みネットワークを用いて、元のネットワークの到達可能な集合の超近似として$ell_infty$-normボックスを提供することを示す。
MNISTデータセット上で暗黙的なニューラルネットワークをトレーニングするためにアルゴリズムを適用し、我々のモデルの堅牢性と、文献における既存のアプローチを通じてトレーニングされたモデルを比較する。
論文 参考訳(メタデータ) (2022-08-08T03:13:24Z) - Generalization Error Bounds for Deep Neural Networks Trained by SGD [3.148524502470734]
勾配降下(SGD)により訓練された深度に対する一般化誤差境界を導出する。
境界は、トレーニング軌跡に沿った損失に明示的に依存する。
その結果、ニューラルネットワークとネットワークハイパースの変化により、境界は非空洞で堅牢であることが判明した。
論文 参考訳(メタデータ) (2022-06-07T13:46:10Z) - The Sample Complexity of One-Hidden-Layer Neural Networks [57.6421258363243]
本研究では,スカラー値を持つ一層ネットワークのクラスとユークリッドノルムで有界な入力について検討する。
隠蔽層重み行列のスペクトルノルムの制御は、一様収束を保証するには不十分であることを示す。
スペクトルノルム制御が十分であることを示す2つの重要な設定を解析する。
論文 参考訳(メタデータ) (2022-02-13T07:12:02Z) - Path Regularization: A Convexity and Sparsity Inducing Regularization
for Parallel ReLU Networks [75.33431791218302]
本稿では,ディープニューラルネットワークのトレーニング問題について検討し,最適化環境に隠された凸性を明らかにするための解析的アプローチを提案する。
我々は、標準のディープ・ネットワークとResNetを特別なケースとして含む、ディープ・パラレルなReLUネットワークアーキテクチャについて検討する。
論文 参考訳(メタデータ) (2021-10-18T18:00:36Z) - Demystifying Batch Normalization in ReLU Networks: Equivalent Convex
Optimization Models and Implicit Regularization [29.411334761836958]
BNを用いた重量減少正規化RELUネットワークの正確な凸表現を得るための解析フレームワークに基づく凸双対性を導入する。
解析により,高次元および/またはCIF化系における単純な閉形式式として最適層重みを求めることができることがわかった。
論文 参考訳(メタデータ) (2021-03-02T06:36:31Z) - A Convergence Theory Towards Practical Over-parameterized Deep Neural
Networks [56.084798078072396]
ネットワーク幅と収束時間の両方で既知の理論境界を大幅に改善することにより、理論と実践のギャップを埋める一歩を踏み出します。
本研究では, サンプルサイズが2次幅で, 両者の時間対数で線形なネットワークに対して, 地球最小値への収束が保証されていることを示す。
私たちの分析と収束境界は、いつでも合理的なサイズの同等のRELUネットワークに変換できる固定アクティベーションパターンを備えたサロゲートネットワークの構築によって導出されます。
論文 参考訳(メタデータ) (2021-01-12T00:40:45Z) - Improve Generalization and Robustness of Neural Networks via Weight
Scale Shifting Invariant Regularizations [52.493315075385325]
重み劣化を含む正則化器の族は、均質な活性化関数を持つネットワークに対する本質的な重みのノルムをペナルティ化するのに有効でないことを示す。
そこで我々は,ニューラルネットワークの本質的な規範を効果的に制約する改良型正規化器を提案する。
論文 参考訳(メタデータ) (2020-08-07T02:55:28Z) - Deep neural networks for inverse problems with pseudodifferential
operators: an application to limited-angle tomography [0.4110409960377149]
線形逆問題において擬微分演算子(Psi$DOs)を学習するための新しい畳み込みニューラルネットワーク(CNN)を提案する。
フォワード演算子のより一般的な仮定の下では、ISTAの展開された反復はCNNの逐次的な層として解釈できることを示す。
特に、LA-CTの場合、アップスケーリング、ダウンスケーリング、畳み込みの操作は、制限角X線変換の畳み込み特性とウェーブレット系を定義する基本特性を組み合わせることで正確に決定できることを示す。
論文 参考訳(メタデータ) (2020-06-02T14:03:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。