論文の概要: Sheaf Graph Neural Networks via PAC-Bayes Spectral Optimization
- arxiv url: http://arxiv.org/abs/2508.00357v1
- Date: Fri, 01 Aug 2025 06:39:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-04 18:08:53.757899
- Title: Sheaf Graph Neural Networks via PAC-Bayes Spectral Optimization
- Title(参考訳): PAC-Bayesスペクトル最適化によるせん断グラフニューラルネットワーク
- Authors: Yoonhyuk Choi, Jiho Choi, Chong-Kwon Kim,
- Abstract要約: グラフニューラルネットワーク(GNN)のオーバースムース化は、異なるノード機能で崩壊を引き起こす。
我々はSGPC(Sheaf GNNs with PAC-Bayes)と呼ばれる新しいスキームを導入する。
我々は,SGPCが未確認ノードに対して信頼区間を提供しながら,最先端のスペクトルおよび層ベースGNNよりも優れていることを示す。
- 参考スコア(独自算出の注目度): 3.2771631221674333
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Over-smoothing in Graph Neural Networks (GNNs) causes collapse in distinct node features, particularly on heterophilic graphs where adjacent nodes often have dissimilar labels. Although sheaf neural networks partially mitigate this problem, they typically rely on static or heavily parameterized sheaf structures that hinder generalization and scalability. Existing sheaf-based models either predefine restriction maps or introduce excessive complexity, yet fail to provide rigorous stability guarantees. In this paper, we introduce a novel scheme called SGPC (Sheaf GNNs with PAC-Bayes Calibration), a unified architecture that combines cellular-sheaf message passing with several mechanisms, including optimal transport-based lifting, variance-reduced diffusion, and PAC-Bayes spectral regularization for robust semi-supervised node classification. We establish performance bounds theoretically and demonstrate that the resulting bound-aware objective can be achieved via end-to-end training in linear computational complexity. Experiments on nine homophilic and heterophilic benchmarks show that SGPC outperforms state-of-the-art spectral and sheaf-based GNNs while providing certified confidence intervals on unseen nodes.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)のオーバースムース化は、特に隣接ノードがしばしば異種ラベルを持つヘテロ親和性グラフにおいて、異なるノード特徴の崩壊を引き起こす。
せん断ニューラルネットワークはこの問題を部分的に緩和するが、それらは通常、一般化とスケーラビリティを妨げる静的または重パラメータ化されたせん断構造に依存している。
既存の棚ベースのモデルは制限マップを事前に定義するか、過度に複雑化するが、厳格な安定性の保証は得られない。
本稿では,SGPC (Sheaf GNNs with PAC-Bayes Calibration) と呼ばれる,セル-シーフメッセージパッシングと,最適な輸送ベースリフト,分散還元拡散,堅牢な半教師付きノード分類のためのPAC-Bayesスペクトル正規化などの機構を組み合わせた統一アーキテクチャを提案する。
理論的に性能バウンダリを確立し、線形計算複雑性におけるエンドツーエンドのトレーニングによって得られたバウンダリ・アウェアの目的が達成できることを実証する。
9つのホモ親和性およびヘテロ親和性ベンチマークの実験により、SGPCは最先端のスペクトルおよび層ベースGNNよりも優れ、未確認ノードに対する信頼区間は保証されている。
関連論文リスト
- ReDiSC: A Reparameterized Masked Diffusion Model for Scalable Node Classification with Structured Predictions [64.17845687013434]
本稿では,構造化ノード分類のための構造拡散モデルであるReDiSCを提案する。
本稿では,ReDiSCが最先端のGNN,ラベル伝搬,拡散ベースラインと比較して,優れた,あるいは高い競争力を発揮することを示す。
特にReDiSCは、従来の構造化拡散法が計算制約によって失敗する大規模データセットに効果的にスケールする。
論文 参考訳(メタデータ) (2025-07-19T04:46:53Z) - Alleviating Structural Distribution Shift in Graph Anomaly Detection [70.1022676681496]
グラフ異常検出(GAD)は二項分類の問題である。
ガロン神経ネットワーク(GNN)は、同胞性隣人からの正常の分類に有用である。
ヘテロ親水性隣人の影響を緩和し、不変にするための枠組みを提案する。
論文 参考訳(メタデータ) (2024-01-25T13:07:34Z) - Heterophily-Aware Graph Attention Network [42.640057865981156]
グラフニューラルネットワーク(GNN)はグラフ表現学習において顕著な成功を収めている。
既存のヘテロフィル性GNNは、各エッジのヘテロフィリのモデリングを無視する傾向にあり、これはヘテロフィリ問題に取り組む上でも不可欠である。
本稿では,局所分布を基礎となるヘテロフィリーとして完全に探索し,活用することで,新たなヘテロフィア対応グラフ注意ネットワーク(HA-GAT)を提案する。
論文 参考訳(メタデータ) (2023-02-07T03:21:55Z) - Simple and Efficient Heterogeneous Graph Neural Network [55.56564522532328]
不均一グラフニューラルネットワーク(HGNN)は、不均一グラフの豊富な構造的および意味的な情報をノード表現に埋め込む強力な能力を持つ。
既存のHGNNは、同種グラフ上のグラフニューラルネットワーク(GNN)から多くのメカニズム、特に注意機構と多層構造を継承する。
本稿では,これらのメカニズムを詳細に検討し,簡便かつ効率的なヘテロジニアスグラフニューラルネットワーク(SeHGNN)を提案する。
論文 参考訳(メタデータ) (2022-07-06T10:01:46Z) - EvenNet: Ignoring Odd-Hop Neighbors Improves Robustness of Graph Neural
Networks [51.42338058718487]
グラフニューラルネットワーク(GNN)は、グラフ機械学習における有望なパフォーマンスについて、広範な研究の注目を集めている。
GCNやGPRGNNのような既存のアプローチは、テストグラフ上のホモフィリな変化に直面しても堅牢ではない。
偶数多項式グラフフィルタに対応するスペクトルGNNであるEvenNetを提案する。
論文 参考訳(メタデータ) (2022-05-27T10:48:14Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
我々は、勾配降下訓練におけるディープニューラルネットワーク(DNN)の収束に対する接続パターンの影響を理論的に特徴づける。
接続パターンの単純なフィルタリングによって、評価対象のモデルの数を削減できることが示される。
論文 参考訳(メタデータ) (2022-05-11T17:43:54Z) - Implicit vs Unfolded Graph Neural Networks [29.803948965931212]
暗黙的かつ展開的なGNNは、異なる規則間で強いノード分類精度が得られることを示す。
IGNNはメモリ効率がかなり高いが、UGNNモデルはユニークで統合されたグラフアテンション機構と伝搬規則をサポートしている。
論文 参考訳(メタデータ) (2021-11-12T07:49:16Z) - Stability of Neural Networks on Manifolds to Relative Perturbations [118.84154142918214]
グラフニューラルネットワーク(GNN)は多くの実践シナリオにおいて素晴らしいパフォーマンスを示している。
GNNは大規模グラフ上でうまくスケールすることができるが、これは既存の安定性がノード数とともに増加するという事実に矛盾する。
論文 参考訳(メタデータ) (2021-10-10T04:37:19Z) - Graph Neural Networks Inspired by Classical Iterative Algorithms [28.528150667063876]
我々は、2つの古典的反復アルゴリズムの更新ルールを模倣し、統合するために設計された新しいGNNレイヤーのファミリーを考える。
新しい注意機構は、基礎となるエンドツーエンドエネルギー関数に明示的に固定され、エッジの不確かさに関する安定性に寄与する。
論文 参考訳(メタデータ) (2021-03-10T14:08:12Z) - Stochastic Aggregation in Graph Neural Networks [9.551282469099887]
グラフニューラルネットワーク(GNN)は、過スムージングおよび限られた電力識別を含む病理を発現する。
GNNsにおける集約のための統合フレームワーク(STAG)を提案する。そこでは、近隣からの集約プロセスにノイズが(適応的に)注入され、ノード埋め込みを形成する。
論文 参考訳(メタデータ) (2021-02-25T02:52:03Z) - Scattering GCN: Overcoming Oversmoothness in Graph Convolutional
Networks [0.0]
グラフ畳み込みネットワーク(GCN)は,構造認識の特徴を抽出することによって,グラフデータ処理において有望な結果を示した。
本稿では、幾何学的散乱変換と残差畳み込みによる従来のGCNの増大を提案する。
前者はグラフ信号の帯域通過フィルタリングが可能であり、GCNでしばしば発生する過度な過度な処理を緩和する。
論文 参考訳(メタデータ) (2020-03-18T18:03:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。