Advances in Prediction of Readmission Rates Using Long Term Short Term
Memory Networks on Healthcare Insurance Data
- URL: http://arxiv.org/abs/2207.00066v1
- Date: Thu, 30 Jun 2022 19:07:10 GMT
- Title: Advances in Prediction of Readmission Rates Using Long Term Short Term
Memory Networks on Healthcare Insurance Data
- Authors: Shuja Khalid, Francisco Matos, Ayman Abunimer, Joel Bartlett, Richard
Duszak, Michal Horny, Judy Gichoya, Imon Banerjee, Hari Trivedi
- Abstract summary: 30-day hospital readmission is a long standing medical problem that affects patients' morbidity and mortality and costs billions of dollars annually.
We developed a bi-directional Long Short Term Memory (LSTM) Network that is able to use readily available insurance data.
Our results demonstrate that a machine learning model is able to predict risk of inpatient readmission with reasonable accuracy for all patients.
- Score: 1.454498931674109
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: 30-day hospital readmission is a long standing medical problem that affects
patients' morbidity and mortality and costs billions of dollars annually.
Recently, machine learning models have been created to predict risk of
inpatient readmission for patients with specific diseases, however no model
exists to predict this risk across all patients. We developed a bi-directional
Long Short Term Memory (LSTM) Network that is able to use readily available
insurance data (inpatient visits, outpatient visits, and drug prescriptions) to
predict 30 day re-admission for any admitted patient, regardless of reason. The
top-performing model achieved an ROC AUC of 0.763 (0.011) when using
historical, inpatient, and post-discharge data. The LSTM model significantly
outperformed a baseline random forest classifier, indicating that understanding
the sequence of events is important for model prediction. Incorporation of
30-days of historical data also significantly improved model performance
compared to inpatient data alone, indicating that a patients clinical history
prior to admission, including outpatient visits and pharmacy data is a strong
contributor to readmission. Our results demonstrate that a machine learning
model is able to predict risk of inpatient readmission with reasonable accuracy
for all patients using structured insurance billing data. Because billing data
or equivalent surrogates can be extracted from sites, such a model could be
deployed to identify patients at risk for readmission before they are
discharged, or to assign more robust follow up (closer follow up, home health,
mailed medications) to at-risk patients after discharge.
Related papers
- Predicting 30-Day Hospital Readmission in Medicare Patients: Insights from an LSTM Deep Learning Model [4.918444397807014]
This study analyzes Medicare hospital readmissions using LSTM networks with feature engineering to assess feature contributions.
The LSTM model is designed to capture temporal dynamics from admission-level and patient-level data.
The major features were the Charlson Comorbidity Index, hospital length of stay, the hospital admissions over the past 6 months, while demographic variables were less impactful.
arXiv Detail & Related papers (2024-10-23T03:50:32Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Diagnosis Uncertain Models For Medical Risk Prediction [80.07192791931533]
We consider a patient risk model which has access to vital signs, lab values, and prior history but does not have access to a patient's diagnosis.
We show that such all-cause' risk models have good generalization across diagnoses but have a predictable failure mode.
We propose a fix for this problem by explicitly modeling the uncertainty in risk prediction coming from uncertainty in patient diagnoses.
arXiv Detail & Related papers (2023-06-29T23:36:04Z) - Foresight -- Deep Generative Modelling of Patient Timelines using
Electronic Health Records [46.024501445093755]
Temporal modelling of medical history can be used to forecast and simulate future events, estimate risk, suggest alternative diagnoses or forecast complications.
We present Foresight, a novel GPT3-based pipeline that uses NER+L tools (i.e. MedCAT) to convert document text into structured, coded concepts.
arXiv Detail & Related papers (2022-12-13T19:06:00Z) - Integrated Convolutional and Recurrent Neural Networks for Health Risk
Prediction using Patient Journey Data with Many Missing Values [9.418011774179794]
This paper proposes a novel end-to-end approach to modeling EHR patient journey data with Integrated Convolutional and Recurrent Neural Networks.
Our model can capture both long- and short-term temporal patterns within each patient journey and effectively handle the high degree of missingness in EHR data without any imputation data generation.
arXiv Detail & Related papers (2022-11-11T07:36:18Z) - Deterioration Prediction using Time-Series of Three Vital Signs and
Current Clinical Features Amongst COVID-19 Patients [6.1594622252295474]
We develop a prognostic model that predicts if a patient will experience deterioration in the forthcoming 3-24 hours.
The model processes routine triadic vital signs: (a) oxygen saturation, (b) heart rate, and (c) temperature.
We train and evaluate the model using data collected from 37,006 COVID-19 patients at NYU Langone Health in New York, USA.
arXiv Detail & Related papers (2022-10-12T02:53:43Z) - Multimodal spatiotemporal graph neural networks for improved prediction
of 30-day all-cause hospital readmission [4.609543591101764]
We propose a multimodal, modality-agnostic graph neural network (MM-STGNN) for prediction of 30-day all-cause hospital readmission.
MM-STGNN achieves AU of 0.79 on both primary and external datasets.
For subset populations of patients with heart and vascular disease, our model also outperforms baselines on predicting 30-day readmission.
arXiv Detail & Related papers (2022-04-14T05:50:07Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - A Knowledge Distillation Ensemble Framework for Predicting Short and
Long-term Hospitalisation Outcomes from Electronic Health Records Data [5.844828229178025]
Existing outcome prediction models suffer from a low recall of infrequent positive outcomes.
We present a highly-scalable and robust machine learning framework to automatically predict adversity represented by mortality and ICU admission.
arXiv Detail & Related papers (2020-11-18T15:56:28Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.