MedAugment: Universal Automatic Data Augmentation Plug-in for Medical Image Analysis
- URL: http://arxiv.org/abs/2306.17466v4
- Date: Wed, 14 Aug 2024 08:08:55 GMT
- Title: MedAugment: Universal Automatic Data Augmentation Plug-in for Medical Image Analysis
- Authors: Zhaoshan Liu, Qiujie Lv, Yifan Li, Ziduo Yang, Lei Shen,
- Abstract summary: Data augmentation (DA) has been widely leveraged in computer vision to alleviate the data shortage.
DA in medical image analysis (MIA) faces multiple challenges.
We propose an efficient and effective automatic DA method termed MedAugment.
- Score: 9.724228319915609
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data augmentation (DA) has been widely leveraged in computer vision to alleviate the data shortage, whereas the DA in medical image analysis (MIA) faces multiple challenges. The prevalent DA approaches in MIA encompass conventional DA, synthetic DA, and automatic DA. However, utilizing these approaches poses various challenges such as experience-driven design and intensive computation cost. Here, we propose an efficient and effective automatic DA method termed MedAugment. We propose a pixel augmentation space and spatial augmentation space and exclude the operations that can break medical details and features, such as severe color distortions or structural alterations that can compromise image diagnostic value. Besides, we propose a novel sampling strategy by sampling a limited number of operations from the two spaces. Moreover, we present a hyperparameter mapping relationship to produce a rational augmentation level and make the MedAugment fully controllable using a single hyperparameter. These configurations settle the differences between natural and medical images, such as high sensitivity to certain attributes such as brightness and posterize. Extensive experimental results on four classification and four segmentation datasets demonstrate the superiority of MedAugment. Compared with existing approaches, the proposed MedAugment serves as a more suitable yet general processing pipeline for medical images without producing color distortions or structural alterations and involving negligible computational overhead. We emphasize that our method can serve as a plugin for arbitrary projects without any extra training stage, thereby holding the potential to make a valuable contribution to the medical field, particularly for medical experts without a solid foundation in deep learning. Code is available at https://github.com/NUS-Tim/MedAugment.
Related papers
- MEDDAP: Medical Dataset Enhancement via Diversified Augmentation Pipeline [1.4910709350090976]
We introduce a novel pipeline called MEDDAP to augment existing small datasets by automatically generating new informative labeled samples.
USLoRA allows for selective fine-tuning of weights within SD, requiring fewer than 0.1% of parameters compared to fully fine-tuning only the UNet portion of SD.
This approach is inspired by clinicians' decision-making processes regarding breast tumors, where tumor shape often plays a more crucial role than intensity.
arXiv Detail & Related papers (2024-03-25T00:17:43Z) - End-to-end autoencoding architecture for the simultaneous generation of
medical images and corresponding segmentation masks [3.1133049660590615]
We present an end-to-end architecture based on the Hamiltonian Variational Autoencoder (HVAE)
This approach yields an improved posterior distribution approximation compared to traditional Variational Autoencoders (VAE)
Our method outperforms generative adversarial conditions, showcasing enhancements in image quality synthesis.
arXiv Detail & Related papers (2023-11-17T11:56:53Z) - EMIT-Diff: Enhancing Medical Image Segmentation via Text-Guided
Diffusion Model [4.057796755073023]
We develop controllable diffusion models for medical image synthesis, called EMIT-Diff.
We leverage recent diffusion probabilistic models to generate realistic and diverse synthetic medical image data.
In our approach, we ensure that the synthesized samples adhere to medically relevant constraints.
arXiv Detail & Related papers (2023-10-19T16:18:02Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
Colonoscopy analysis is essential for assisting clinical diagnosis and treatment.
The scarcity of annotated data limits the effectiveness and generalization of existing methods.
We propose an Adaptive Refinement Semantic Diffusion Model (ArSDM) to generate colonoscopy images that benefit the downstream tasks.
arXiv Detail & Related papers (2023-09-03T07:55:46Z) - Data Augmentation-Based Unsupervised Domain Adaptation In Medical
Imaging [0.709016563801433]
We propose an unsupervised method for robust domain adaptation in brain MRI segmentation by leveraging MRI-specific augmentation techniques.
The results show that our proposed approach achieves high accuracy, exhibits broad applicability, and showcases remarkable robustness against domain shift in various tasks.
arXiv Detail & Related papers (2023-08-08T17:00:11Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - MedSegDiff-V2: Diffusion based Medical Image Segmentation with
Transformer [53.575573940055335]
We propose a novel Transformer-based Diffusion framework, called MedSegDiff-V2.
We verify its effectiveness on 20 medical image segmentation tasks with different image modalities.
arXiv Detail & Related papers (2023-01-19T03:42:36Z) - PrepNet: A Convolutional Auto-Encoder to Homogenize CT Scans for
Cross-Dataset Medical Image Analysis [0.22485007639406518]
COVID-19 diagnosis can now be done efficiently using PCR tests, but this use case exemplifies the need for a methodology to overcome data variability issues.
We propose a novel generative approach that aims at erasing the differences induced by e.g. the imaging technology while simultaneously introducing minimal changes to the CT scans.
arXiv Detail & Related papers (2022-08-19T15:49:47Z) - AlignTransformer: Hierarchical Alignment of Visual Regions and Disease
Tags for Medical Report Generation [50.21065317817769]
We propose an AlignTransformer framework, which includes the Align Hierarchical Attention (AHA) and the Multi-Grained Transformer (MGT) modules.
Experiments on the public IU-Xray and MIMIC-CXR datasets show that the AlignTransformer can achieve results competitive with state-of-the-art methods on the two datasets.
arXiv Detail & Related papers (2022-03-18T13:43:53Z) - FedMed-ATL: Misaligned Unpaired Brain Image Synthesis via Affine
Transform Loss [58.58979566599889]
We propose a novel self-supervised learning (FedMed) for brain image synthesis.
An affine transform loss (ATL) was formulated to make use of severely distorted images without violating privacy legislation.
The proposed method demonstrates advanced performance in both the quality of synthesized results under a severely misaligned and unpaired data setting.
arXiv Detail & Related papers (2022-01-29T13:45:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.