Efficient uniform approximation using Random Vector Functional Link
networks
- URL: http://arxiv.org/abs/2306.17501v1
- Date: Fri, 30 Jun 2023 09:25:03 GMT
- Title: Efficient uniform approximation using Random Vector Functional Link
networks
- Authors: Palina Salanevich and Olov Schavemaker
- Abstract summary: A Random Vector Functional Link (RVFL) network is a depth-2 neural network with random inner nodes and biases.
We show that an RVFL with ReLU activation can approximate the Lipschitz target function.
Our method of proof is rooted in theory and harmonic analysis.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A Random Vector Functional Link (RVFL) network is a depth-2 neural network
with random inner weights and biases. As only the outer weights of such
architectures need to be learned, the learning process boils down to a linear
optimization task, allowing one to sidestep the pitfalls of nonconvex
optimization problems. In this paper, we prove that an RVFL with ReLU
activation functions can approximate Lipschitz continuous functions provided
its hidden layer is exponentially wide in the input dimension. Although it has
been established before that such approximation can be achieved in $L_2$ sense,
we prove it for $L_\infty$ approximation error and Gaussian inner weights. To
the best of our knowledge, our result is the first of this kind. We give a
nonasymptotic lower bound for the number of hidden layer nodes, depending on,
among other things, the Lipschitz constant of the target function, the desired
accuracy, and the input dimension. Our method of proof is rooted in probability
theory and harmonic analysis.
Related papers
- Enhanced Feature Learning via Regularisation: Integrating Neural Networks and Kernel Methods [0.0]
We introduce an efficient method for the estimator, called Brownian Kernel Neural Network (BKerNN)
We show that BKerNN's expected risk converges to the minimal risk with explicit high-probability rates of $O( min((d/n)1/2, n-1/6)$ (up to logarithmic factors)
arXiv Detail & Related papers (2024-07-24T13:46:50Z) - Multi-layer random features and the approximation power of neural networks [4.178980693837599]
We prove that a reproducing kernel Hilbert space contains only functions that can be approximated by the architecture.
We show that if eigenvalues of the integral operator of the NNGP decay slower than $k-n-frac23$ where $k$ is an order of an eigenvalue, our theorem guarantees a more succinct neural network approximation than Barron's theorem.
arXiv Detail & Related papers (2024-04-26T14:57:56Z) - A Mean-Field Analysis of Neural Stochastic Gradient Descent-Ascent for Functional Minimax Optimization [90.87444114491116]
This paper studies minimax optimization problems defined over infinite-dimensional function classes of overparametricized two-layer neural networks.
We address (i) the convergence of the gradient descent-ascent algorithm and (ii) the representation learning of the neural networks.
Results show that the feature representation induced by the neural networks is allowed to deviate from the initial one by the magnitude of $O(alpha-1)$, measured in terms of the Wasserstein distance.
arXiv Detail & Related papers (2024-04-18T16:46:08Z) - Robustly Learning Single-Index Models via Alignment Sharpness [40.886706402941435]
We study the problem of learning Single-Index Models under the $L2$ loss in the agnostic model.
We give an efficient learning algorithm, achieving a constant factor approximation to the optimal loss.
arXiv Detail & Related papers (2024-02-27T18:48:07Z) - Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization [73.80101701431103]
The linearized-Laplace approximation (LLA) has been shown to be effective and efficient in constructing Bayesian neural networks.
We study the usefulness of the LLA in Bayesian optimization and highlight its strong performance and flexibility.
arXiv Detail & Related papers (2023-04-17T14:23:43Z) - A Law of Robustness beyond Isoperimetry [84.33752026418045]
We prove a Lipschitzness lower bound $Omega(sqrtn/p)$ of robustness of interpolating neural network parameters on arbitrary distributions.
We then show the potential benefit of overparametrization for smooth data when $n=mathrmpoly(d)$.
We disprove the potential existence of an $O(1)$-Lipschitz robust interpolating function when $n=exp(omega(d))$.
arXiv Detail & Related papers (2022-02-23T16:10:23Z) - Going Beyond Linear RL: Sample Efficient Neural Function Approximation [76.57464214864756]
We study function approximation with two-layer neural networks.
Our results significantly improve upon what can be attained with linear (or eluder dimension) methods.
arXiv Detail & Related papers (2021-07-14T03:03:56Z) - Nearly Optimal Regret for Learning Adversarial MDPs with Linear Function
Approximation [92.3161051419884]
We study the reinforcement learning for finite-horizon episodic Markov decision processes with adversarial reward and full information feedback.
We show that it can achieve $tildeO(dHsqrtT)$ regret, where $H$ is the length of the episode.
We also prove a matching lower bound of $tildeOmega(dHsqrtT)$ up to logarithmic factors.
arXiv Detail & Related papers (2021-02-17T18:54:08Z) - Random Vector Functional Link Networks for Function Approximation on Manifolds [8.535815777849786]
We show that single layer neural-networks with random input-to-hidden layer weights and biases have seen success in practice.
We further adapt this randomized neural network architecture to approximate functions on smooth, compact submanifolds of Euclidean space.
arXiv Detail & Related papers (2020-07-30T23:50:44Z) - Complexity of Finding Stationary Points of Nonsmooth Nonconvex Functions [84.49087114959872]
We provide the first non-asymptotic analysis for finding stationary points of nonsmooth, nonsmooth functions.
In particular, we study Hadamard semi-differentiable functions, perhaps the largest class of nonsmooth functions.
arXiv Detail & Related papers (2020-02-10T23:23:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.