論文の概要: S.T.A.R.-Track: Latent Motion Models for End-to-End 3D Object Tracking
with Adaptive Spatio-Temporal Appearance Representations
- arxiv url: http://arxiv.org/abs/2306.17602v2
- Date: Fri, 22 Dec 2023 10:56:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-25 18:33:20.359405
- Title: S.T.A.R.-Track: Latent Motion Models for End-to-End 3D Object Tracking
with Adaptive Spatio-Temporal Appearance Representations
- Title(参考訳): S.T.A.R.トラック:適応時空間表現を用いたエンドツーエンド3次元物体追跡のための潜在運動モデル
- Authors: Simon Doll, Niklas Hanselmann, Lukas Schneider, Richard Schulz, Markus
Enzweiler, Hendrik P.A. Lensch
- Abstract要約: トラッキング・バイ・アテンションのパラダイムに従って,3次元トラッキングのためのオブジェクト中心のトランスフォーマーベースのフレームワークを提案する。
そこで我々はS.T.A.R.-Trackを提案する。これは新しい潜伏運動モデル(LMM)を用いてオブジェクトクエリを調整し、潜伏空間における視方向や照明条件の変化を考慮に入れている。
- 参考スコア(独自算出の注目度): 11.089640629116547
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Following the tracking-by-attention paradigm, this paper introduces an
object-centric, transformer-based framework for tracking in 3D. Traditional
model-based tracking approaches incorporate the geometric effect of object- and
ego motion between frames with a geometric motion model. Inspired by this, we
propose S.T.A.R.-Track, which uses a novel latent motion model (LMM) to
additionally adjust object queries to account for changes in viewing direction
and lighting conditions directly in the latent space, while still modeling the
geometric motion explicitly. Combined with a novel learnable track embedding
that aids in modeling the existence probability of tracks, this results in a
generic tracking framework that can be integrated with any query-based
detector. Extensive experiments on the nuScenes benchmark demonstrate the
benefits of our approach, showing \ac{sota} performance for DETR3D-based
trackers while drastically reducing the number of identity switches of tracks
at the same time.
- Abstract(参考訳): 本稿では,トラッキング・バイ・アテンションのパラダイムに従って,オブジェクト中心のトランスフォーマーベースの3d追跡フレームワークを提案する。
従来のモデルに基づく追跡手法は、幾何運動モデルを用いたフレーム間のオブジェクトとエゴの動きの幾何学的効果を取り入れている。
そこで,我々はs.t.a.r.-trackを提案する。s.t.a.r.-trackは,新しい潜在運動モデル (lmm) を用いて,潜在空間における視方向や照明条件の変化を考慮したオブジェクトクエリの調整を行う。
トラックの存在確率をモデル化する新しい学習可能なトラック埋め込みと組み合わせることで、任意のクエリベースの検出器と統合可能な汎用的なトラッキングフレームワークが実現される。
nuScenes ベンチマークによる大規模な実験により,DETR3D ベースのトラッカーの \ac{sota} 性能を示すとともに,トラックの同一性スイッチ数を劇的に削減した。
関連論文リスト
- Degrees of Freedom Matter: Inferring Dynamics from Point Trajectories [28.701879490459675]
ニューラルネットワークによってパラメータ化された暗黙の運動場を学習し、同一領域内の新規点の動きを予測することを目的とする。
我々は、SIRENが提供する固有正則化を活用し、入力層を変更して時間的に滑らかな運動場を生成する。
実験では, 未知点軌道の予測におけるモデルの性能評価と, 変形を伴う時間メッシュアライメントへの応用について検討した。
論文 参考訳(メタデータ) (2024-06-05T21:02:10Z) - UniQuadric: A SLAM Backend for Unknown Rigid Object 3D Tracking and
Light-Weight Modeling [7.626461564400769]
本稿では,エゴモーショントラッキング,剛体オブジェクトモーショントラッキング,モデリングを統一するSLAMバックエンドを提案する。
本システムは,複雑な動的シーンにおける物体知覚の潜在的な応用を実証する。
論文 参考訳(メタデータ) (2023-09-29T07:50:09Z) - Delving into Motion-Aware Matching for Monocular 3D Object Tracking [81.68608983602581]
異なる時間軸に沿った物体の運動キューが3次元多物体追跡において重要であることが判明した。
3つの動き認識コンポーネントからなるフレームワークであるMoMA-M3Tを提案する。
我々はnuScenesとKITTIデータセットに関する広範な実験を行い、MoMA-M3Tが最先端の手法と競合する性能を発揮することを実証した。
論文 参考訳(メタデータ) (2023-08-22T17:53:58Z) - TrajectoryFormer: 3D Object Tracking Transformer with Predictive
Trajectory Hypotheses [51.60422927416087]
3Dマルチオブジェクトトラッキング(MOT)は、自律走行車やサービスロボットを含む多くのアプリケーションにとって不可欠である。
本稿では,新しいポイントクラウドベースの3DMOTフレームワークであるTrjectoryFormerを紹介する。
論文 参考訳(メタデータ) (2023-06-09T13:31:50Z) - MotionTrack: Learning Motion Predictor for Multiple Object Tracking [68.68339102749358]
本研究では,学習可能なモーション予測器を中心に,新しいモーショントラッカーであるMotionTrackを紹介する。
実験結果から、MotionTrackはDancetrackやSportsMOTといったデータセット上での最先端のパフォーマンスを示す。
論文 参考訳(メタデータ) (2023-06-05T04:24:11Z) - You Only Need Two Detectors to Achieve Multi-Modal 3D Multi-Object Tracking [9.20064374262956]
提案手法は,2次元検出器と3次元検出器のみを用いて,ロバストなトラッキングを実現する。
多くの最先端のTBDベースのマルチモーダルトラッキング手法よりも正確であることが証明されている。
論文 参考訳(メタデータ) (2023-04-18T02:45:18Z) - Modeling Continuous Motion for 3D Point Cloud Object Tracking [54.48716096286417]
本稿では,各トラックレットを連続ストリームとみなす新しいアプローチを提案する。
各タイムスタンプでは、現在のフレームだけがネットワークに送られ、メモリバンクに格納された複数フレームの履歴機能と相互作用する。
頑健な追跡のためのマルチフレーム機能の利用性を高めるために,コントラッシブシーケンス強化戦略を提案する。
論文 参考訳(メタデータ) (2023-03-14T02:58:27Z) - DirectTracker: 3D Multi-Object Tracking Using Direct Image Alignment and
Photometric Bundle Adjustment [41.27664827586102]
直接法は視覚計測とSLAMの応用において優れた性能を示した。
本研究では,3次元物体検出のための短期追跡とスライディングウインドウ光度束調整のための直像アライメントを効果的に組み合わせたフレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-29T17:40:22Z) - Monocular Quasi-Dense 3D Object Tracking [99.51683944057191]
周囲の物体の将来の位置を予測し、自律運転などの多くのアプリケーションで観測者の行動を計画するためには、信頼性と正確な3D追跡フレームワークが不可欠である。
移動プラットフォーム上で撮影された2次元画像のシーケンスから,移動物体を時間とともに効果的に関連付け,その全3次元バウンディングボックス情報を推定するフレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-12T15:30:02Z) - Learning Monocular Depth in Dynamic Scenes via Instance-Aware Projection
Consistency [114.02182755620784]
本稿では,複数の動的物体の6-DoF動作,エゴモーション,深度を,監督なしで一眼レフカメラで明示的にモデル化する,エンドツーエンドのジョイントトレーニングフレームワークを提案する。
筆者らのフレームワークは,最先端の深度・動き推定法より優れていた。
論文 参考訳(メタデータ) (2021-02-04T14:26:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。