論文の概要: Tailoring quantum error correction to spin qubits
- arxiv url: http://arxiv.org/abs/2306.17786v2
- Date: Wed, 13 Mar 2024 16:25:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-14 18:57:15.129142
- Title: Tailoring quantum error correction to spin qubits
- Title(参考訳): スピン量子ビットへの量子誤差補正のテーラー化
- Authors: Bence Het\'enyi and James R. Wootton
- Abstract要約: 最先端のエラー訂正コードでは、最寄りの接続しか必要としない。
これらの誤り訂正符号のそれぞれにスピン量子レイアウトが必要であった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spin qubits in semiconductor structures bring the promise of large-scale 2D
integration, with the possibility to incorporate the control electronics on the
same chip. In order to perform error correction on this platform, the
characteristic features of spin qubits need to be accounted for. E.g., qubit
readout involves an additional qubit which necessitates careful reconsideration
of the qubit layout. The noise affecting spin qubits has further peculiarities
such as the strong bias towards dephasing. In this work we consider
state-of-the-art error correction codes that require only nearest-neighbour
connectivity and are amenable to fast decoding via minimum-weight perfect
matching. Compared to the surface code, the XZZX code, the reduced-connectivity
surface code, the XYZ$^2$ matching code, and the Floquet code all bring
different advantages in terms of error threshold, connectivity, or logical
qubit encoding. We present the spin-qubit layout required for each of these
error correction codes, accounting for reference qubits required for spin
readout. The performance of these codes is studied under circuit-level noise
accounting for distinct error rates for gates, readout and qubit decoherence
during idling stages.
- Abstract(参考訳): 半導体構造におけるスピン量子ビットは、制御エレクトロニクスを同じチップに組み込む可能性があり、大規模な2D統合を実現する。
このプラットフォーム上で誤り訂正を行うには、スピン量子ビットの特徴的特徴を考慮する必要がある。
例えば、qubitreadoutは、qubitレイアウトの慎重に再検討を必要とする追加のqubitを含む。
スピン量子ビットに影響を及ぼすノイズは、デフォーカスに対する強いバイアスのようなさらに特異性を持つ。
本研究では,最寄りの接続しか必要とせず,最小限の完全マッチングによる高速復号化が可能な最先端の誤り訂正符号について検討する。
表面符号と比較して、XZZX符号、縮小接続面符号、XYZ$^2$マッチング符号、フロケ符号は誤り閾値、接続性、論理量子ビット符号化の点で異なる利点をもたらす。
これらの誤り訂正符号のそれぞれに必要となるスピンキュービットレイアウトを示し、スピン読み出しに必要な参照キュービットを考慮に入れた。
これらの符号の性能は, アイドリング段階におけるゲート, リードアウト, キュービットのデコヒーレンスに対して, 異なる誤差率を示す回路レベルのノイズカウンタにより検討される。
関連論文リスト
- Fault-tolerant quantum computation using large spin cat-codes [0.8640652806228457]
本研究では、スピンキャット符号を用いて、大きなスピンキュウトに符号化された量子ビットに基づいて、フォールトトレラントな量子誤り訂正プロトコルを構築する。
我々は、量子制御とライダーベルク封鎖を用いて、ランク保存されたCNOTゲートを含む普遍ゲートセットを生成する方法を示す。
これらの知見は、量子情報処理において、耐障害性、高いしきい値、リソースオーバーヘッドを低減できる可能性を持つ、大きなスピンで量子ビットを符号化する方法を舗装している。
論文 参考訳(メタデータ) (2024-01-08T22:56:05Z) - Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
我々は、支配的なノイズを既知の場所での消去に効率よく変換することで、消去量子ビットの考え方を利用する。
消去量子ビットと最近導入されたFloquet符号に基づくQECスキームの提案と最適化を行う。
以上の結果から, 消去量子ビットに基づくQECスキームは, より複雑であるにもかかわらず, 標準手法よりも著しく優れていることが示された。
論文 参考訳(メタデータ) (2023-12-21T17:40:18Z) - Correcting biased noise using Gottesman-Kitaev-Preskill repetition code
with noisy ancilla [0.6802401545890963]
Gottesman-Kitaev-Preskill (GKP)符号は位相空間の小さな変位誤差を補正するために提案されている。
位相空間のノイズが偏った場合、二乗格子GKP符号はXZZX曲面符号または繰り返し符号でアシラリー化することができる。
本稿では,GKP繰り返し符号と物理アンシラリーGKP量子ビットの重み付き雑音補正性能について検討する。
論文 参考訳(メタデータ) (2023-08-03T06:14:43Z) - Demonstrating a long-coherence dual-rail erasure qubit using tunable transmons [59.63080344946083]
共振結合された一対のトランスモンからなる「デュアルレール量子ビット」が高コヒーレントな消去量子ビットを形成することを示す。
我々は、チェック毎に0.1%$ dephasingエラーを導入しながら、消去エラーの中間回路検出を実演する。
この研究は、ハードウェア効率の量子誤り訂正のための魅力的なビルディングブロックとして、トランスモンベースのデュアルレールキュービットを確立する。
論文 参考訳(メタデータ) (2023-07-17T18:00:01Z) - Correcting non-independent and non-identically distributed errors with
surface codes [0.8039067099377079]
我々はクリフォード共役法により既知の雑音構造に適応した位相曲面符号の特性を開発し,検討する。
局所的に一様でない単一ビット雑音に調整された曲面符号とスケーラブルな整合デコーダを併用すると、エラー閾値の増加とサブ閾値故障率の指数的抑制が得られることを示す。
論文 参考訳(メタデータ) (2022-08-03T16:21:44Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
高速かつ高精度なデコーダを導入し、幅広い種類の量子誤り訂正符号で使用することができる。
我々のデコーダは、信仰マッチングと信念フィンドと呼ばれ、すべてのノイズ情報を活用し、QECの高精度なデモを解き放つ。
このデコーダは, 標準の正方形曲面符号に対して, 整形曲面符号において, より高いしきい値と低い量子ビットオーバーヘッドをもたらすことがわかった。
論文 参考訳(メタデータ) (2022-03-09T18:48:54Z) - Phase flip code with semiconductor spin qubits [0.0]
量子誤り訂正符号はゲルマニウムの4ビットアレイを用いて実装可能であることを示す。
2量子位相フリップコードを実行し、アシラキュービットに再焦点パルスを適用することにより、データキュービットの状態を保存することができることを示す。
論文 参考訳(メタデータ) (2022-02-23T14:10:13Z) - Erasure conversion for fault-tolerant quantum computing in alkaline
earth Rydberg atom arrays [3.575043595126111]
本稿では,物理誤差を消去に変換する171ドルYb中性原子量子ビットに対して,量子ビット符号化とゲートプロトコルを提案する。
エラーの98%を消去に変換できると見積もっている。
論文 参考訳(メタデータ) (2022-01-10T18:56:31Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
テレポーテーションに基づく誤り訂正回路を用いて、回転対称符号の誤り訂正能力を解析する。
マイクロ波光学における現在達成可能な測定効率により, ボソニック回転符号の破壊ポテンシャルは著しく低下することが判明した。
論文 参考訳(メタデータ) (2021-08-02T16:12:13Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
耐故障性ウェイト4パリティチェック測定方式を実験的に実証した。
フラグ条件パリティ測定の単発忠実度は93.2(2)%である。
このスキームは、安定化器量子誤り訂正プロトコルの幅広いクラスにおいて必須な構成要素である。
論文 参考訳(メタデータ) (2021-07-13T20:08:04Z) - Exponential suppression of bit or phase flip errors with repetitive
error correction [56.362599585843085]
最先端の量子プラットフォームは通常、物理的エラーレートが10~3ドル近くである。
量子誤り訂正(QEC)は、多くの物理量子ビットに量子論理情報を分散することで、この分割を橋渡しすることを約束する。
超伝導量子ビットの2次元格子に埋め込まれた1次元繰り返し符号を実装し、ビットまたは位相フリップ誤差の指数的抑制を示す。
論文 参考訳(メタデータ) (2021-02-11T17:11:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。