論文の概要: Inertial Navigation Meets Deep Learning: A Survey of Current Trends and
Future Directions
- arxiv url: http://arxiv.org/abs/2307.00014v1
- Date: Thu, 22 Jun 2023 14:32:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-09 14:03:25.812916
- Title: Inertial Navigation Meets Deep Learning: A Survey of Current Trends and
Future Directions
- Title(参考訳): ディープラーニングによる慣性ナビゲーションの現状と今後の方向性
- Authors: Nadav Cohen and Itzik Klein
- Abstract要約: 近年,慣性センシング分野において,機械学習や深層学習技術の発達が著しく進んでいる。
データ駆動アプローチは、モデルベースのナビゲーションとセンサー融合アルゴリズムを強化するために使用される。
本稿では,これらの深層学習手法について詳細に検討する。
- 参考スコア(独自算出の注目度): 12.572597882082054
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inertial sensing is used in many applications and platforms, ranging from
day-to-day devices such as smartphones to very complex ones such as autonomous
vehicles. In recent years, the development of machine learning and deep
learning techniques has increased significantly in the field of inertial
sensing. This is due to the development of efficient computing hardware and the
accessibility of publicly available sensor data. These data-driven approaches
are used to empower model-based navigation and sensor fusion algorithms. This
paper provides an in-depth review of those deep learning methods. We examine
separately, each vehicle operation domain including land, air, and sea. Each
domain is divided into pure inertial advances and improvements based on filter
parameters learning. In addition, we review deep learning approaches for
calibrating and denoising inertial sensors. Throughout the paper, we discuss
these trends and future directions. We also provide statistics on the commonly
used approaches to illustrate their efficiency and stimulate further research
in deep learning embedded in inertial navigation and fusion.
- Abstract(参考訳): 慣性センシングは、スマートフォンのような日々のデバイスから、自動運転車のような非常に複雑なデバイスまで、多くのアプリケーションやプラットフォームで使われている。
近年,慣性センシングの分野では,機械学習やディープラーニング技術の開発が著しく増加している。
これは、効率的なコンピューティングハードウェアの開発と、公開されているセンサデータのアクセシビリティが原因である。
これらのデータ駆動アプローチは、モデルベースのナビゲーションとセンサー融合アルゴリズムを強化するために使用される。
本稿では,これらの深層学習手法を詳細に検討する。
陸上,大気,海を含む各車両操作領域を別々に検討する。
各ドメインは、フィルタパラメータ学習に基づいて、純粋な慣性進歩と改善に分割される。
さらに,慣性センサの校正・復調のための深層学習手法についても検討した。
本稿では,これらの傾向と今後の方向性について論じる。
また,慣性航法と融合に埋め込まれた深層学習の効率化とさらなる研究を促進するために,よく用いられる手法の統計も提供する。
関連論文リスト
- Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future [119.88454942558485]
水中物体検出(UOD)は、水中の画像やビデオ中の物体を識別し、ローカライズすることを目的としている。
近年、人工知能(AI)に基づく手法、特に深層学習法は、UODにおいて有望な性能を示している。
論文 参考訳(メタデータ) (2024-10-08T00:25:33Z) - Deep Learning for Trajectory Data Management and Mining: A Survey and Beyond [58.63558696061679]
軌道計算は、位置サービス、都市交通、公共安全など、様々な実用用途において重要である。
トラジェクトリ・コンピューティングのためのディープラーニング(DL4Traj)の開発と最近の進歩について概観する。
特に、軌道計算を増強する可能性を持つ大規模言語モデル(LLM)の最近の進歩をカプセル化する。
論文 参考訳(メタデータ) (2024-03-21T05:57:27Z) - Federated Learning on Edge Sensing Devices: A Review [0.0]
プライバシ、ハードウェア、接続性の制限に対するソリューションとして、フェデレートラーニング(FL)が登場している。
FLの主要な原則、ソフトウェアフレームワーク、テストベッドに重点を置いています。
また,現在のセンサ技術,センサ装置の特性,FLを利用したセンサアプリケーションについても検討する。
論文 参考訳(メタデータ) (2023-11-02T12:55:26Z) - End-to-end Autonomous Driving using Deep Learning: A Systematic Review [0.0]
エンドツーエンドの自律運転(End-to-end autonomous driving)は、センサーの入力データやその他のメタデータを事前情報として取り込み、エゴ車の制御信号や計画された軌跡を直接出力する、完全に微分可能な機械学習システムである。
本稿では, 物体検出, セマンティックシーン理解, 物体追跡, 軌道予測, 軌道計画, 車両制御, 社会行動, コミュニケーションなど, 最新の機械学習技術をすべて体系的に検証し, このエンドツーエンドのタスクを実行する。
論文 参考訳(メタデータ) (2023-08-27T17:43:58Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
本研究の目的は、ADASおよび自動運転車のカメラおよびレーダーによる認識の現在のシナリオに関する研究を行うことである。
両センサと融合に関する概念と特徴を提示する。
本稿では、ディープラーニングに基づく検出とセグメンテーションタスクの概要と、車両の認識における主要なデータセット、メトリクス、課題、オープンな質問について説明する。
論文 参考訳(メタデータ) (2023-03-08T00:48:32Z) - Deep Learning for Inertial Positioning: A Survey [4.188058836787458]
慣性センサーによる位置決めは、パーソナルナビゲーション、ロケーションベースのセキュリティ、ヒューマンデバイスインタラクションなど、さまざまなアプリケーションにおいて不可欠である。
深層学習技術が開発され、慣性位置決めの問題に対処するための重要な研究が進められている。
本稿は,深層学習技術が慣性的位置決め問題を解決する可能性に関心を持つ研究者や実践者を含む,さまざまなバックグラウンドから読者を引きつけることを目的としている。
論文 参考訳(メタデータ) (2023-03-07T09:33:49Z) - Exploring Contextual Representation and Multi-Modality for End-to-End
Autonomous Driving [58.879758550901364]
最近の知覚システムは、センサー融合による空間理解を高めるが、しばしば完全な環境コンテキストを欠いている。
我々は,3台のカメラを統合し,人間の視野をエミュレートするフレームワークを導入し,トップダウンのバードアイビューセマンティックデータと組み合わせて文脈表現を強化する。
提案手法は, オープンループ設定において0.67mの変位誤差を達成し, nuScenesデータセットでは6.9%の精度で現在の手法を上回っている。
論文 参考訳(メタデータ) (2022-10-13T05:56:20Z) - Inertial Sensing Meets Artificial Intelligence: Opportunity or
Challenge? [12.244109673209769]
本稿では,AI技術を用いて様々な側面からの慣性感覚を高める研究について概説する。
センサーの設計と選択、キャリブレーションとエラーモデリング、ナビゲーションとモーションセンシングアルゴリズム、マルチセンサー情報融合、システム評価、実用的な応用が含まれる。
AIによって強化された慣性センシングの9つの利点と9つの課題をまとめた上で、今後の研究方向性を指摘する。
論文 参考訳(メタデータ) (2020-07-13T22:33:21Z) - A Survey on Deep Learning for Localization and Mapping: Towards the Age
of Spatial Machine Intelligence [48.67755344239951]
包括的調査を行い、深層学習を用いた局所化とマッピングのための新しい分類法を提案する。
オードメトリ推定、マッピング、グローバルローカライゼーション、同時ローカライゼーション、マッピングなど、幅広いトピックがカバーされている。
この研究がロボティクス、コンピュータビジョン、機械学習コミュニティの新たな成果を結び付けることを願っている。
論文 参考訳(メタデータ) (2020-06-22T19:01:21Z) - Deep Learning based Pedestrian Inertial Navigation: Methods, Dataset and
On-Device Inference [49.88536971774444]
慣性測定ユニット(IMU)は小型で安価でエネルギー効率が良く、スマートデバイスや移動ロボットに広く使われている。
正確で信頼性の高い歩行者ナビゲーションをサポートするために慣性データをエクスプロイトすることは、新しいインターネット・オブ・シングス・アプリケーションやサービスにとって重要なコンポーネントである。
我々は、深層学習に基づく慣性ナビゲーション研究のための最初の公開データセットであるOxIOD(OxIOD)を提示、リリースする。
論文 参考訳(メタデータ) (2020-01-13T04:41:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。