Machine learning for advancing low-temperature plasma modeling and
simulation
- URL: http://arxiv.org/abs/2307.00131v2
- Date: Thu, 14 Dec 2023 21:21:46 GMT
- Title: Machine learning for advancing low-temperature plasma modeling and
simulation
- Authors: Jan Trieschmann, Luca Vialetto, Tobias Gergs
- Abstract summary: We review the state-of-the-art focusing on approaches to low-temperature plasma modeling and simulation.
We provide a perspective of potential advances to plasma science and technology.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning has had an enormous impact in many scientific disciplines.
Also in the field of low-temperature plasma modeling and simulation it has
attracted significant interest within the past years. Whereas its application
should be carefully assessed in general, many aspects of plasma modeling and
simulation have benefited substantially from recent developments within the
field of machine learning and data-driven modeling. In this survey, we approach
two main objectives: (a) We review the state-of-the-art focusing on approaches
to low-temperature plasma modeling and simulation. By dividing our survey into
plasma physics, plasma chemistry, plasma-surface interactions, and plasma
process control, we aim to extensively discuss relevant examples from
literature. (b) We provide a perspective of potential advances to plasma
science and technology. We specifically elaborate on advances possibly enabled
by adaptation from other scientific disciplines. We argue that not only the
known unknowns, but also unknown unknowns may be discovered due to the inherent
propensity of data-driven methods to spotlight hidden patterns in data.
Related papers
- Machine Learning Applications to Computational Plasma Physics and Reduced-Order Plasma Modeling: A Perspective [0.0]
This Perspective aims to outline a roadmap for transferring machine learning advances in fluid mechanics to computational plasma physics.
We begin by discussing some general fundamental aspects of ML, including the various categories of ML algorithms and the different types of problems that can be solved with the help of ML.
We then present specific examples from the use of ML in computational fluid dynamics, reviewing several insightful prior efforts.
arXiv Detail & Related papers (2024-09-04T00:35:55Z) - Application of Neural Ordinary Differential Equations for ITER Burning Plasma Dynamics [0.0]
The dynamics of burning plasmas in tokamaks are crucial for advancing controlled thermonuclear fusion.
This study introduces the NeuralPlasmaODE to simulate the complex energy transfer processes in ITER deuterium-tritium (D-T) plasmas.
arXiv Detail & Related papers (2024-08-26T16:47:20Z) - Recent Advances on Machine Learning for Computational Fluid Dynamics: A Survey [51.87875066383221]
This paper introduces fundamental concepts, traditional methods, and benchmark datasets, then examine the various roles Machine Learning plays in improving CFD.
We highlight real-world applications of ML for CFD in critical scientific and engineering disciplines, including aerodynamics, combustion, atmosphere & ocean science, biology fluid, plasma, symbolic regression, and reduced order modeling.
We draw the conclusion that ML is poised to significantly transform CFD research by enhancing simulation accuracy, reducing computational time, and enabling more complex analyses of fluid dynamics.
arXiv Detail & Related papers (2024-08-22T07:33:11Z) - LLM and Simulation as Bilevel Optimizers: A New Paradigm to Advance Physical Scientific Discovery [141.39722070734737]
We propose to enhance the knowledge-driven, abstract reasoning abilities of Large Language Models with the computational strength of simulations.
We introduce Scientific Generative Agent (SGA), a bilevel optimization framework.
We conduct experiments to demonstrate our framework's efficacy in law discovery and molecular design.
arXiv Detail & Related papers (2024-05-16T03:04:10Z) - Data-driven local operator finding for reduced-order modelling of plasma
systems: I. Concept and verifications [2.9320342785886973]
Reduced-order plasma models can efficiently predict plasma behavior across various settings and configurations.
We introduce the "Phi Method" in this two-part article.
Part I presents this novel algorithm, which employs constrained regression on a candidate term library.
Part II will delve into the method's application for parametric dynamics discovery.
arXiv Detail & Related papers (2024-03-03T14:50:15Z) - Plasma Surrogate Modelling using Fourier Neural Operators [57.52074029826172]
Predicting plasma evolution within a Tokamak reactor is crucial to realizing the goal of sustainable fusion.
We demonstrate accurate predictions of evolution plasma using deep learning-based surrogate modelling tools, viz., Neural Operators (FNO)
We show that FNO has a speedup of six orders of magnitude over traditional solvers in predicting the plasma dynamics simulated from magnetohydrodynamic models.
FNOs can also predict plasma evolution on real-world experimental data observed by the cameras positioned within the MAST Tokamak.
arXiv Detail & Related papers (2023-11-10T10:05:00Z) - Learning the dynamics of a one-dimensional plasma model with graph neural networks [0.0]
We show that our model learns the kinetic plasma dynamics of the one-dimensional plasma model.
We compare the performance against the original plasma model in terms of run-time, conservation laws, and temporal evolution of key physical quantities.
arXiv Detail & Related papers (2023-10-26T17:58:12Z) - Data-driven Science and Machine Learning Methods in Laser-Plasma Physics [4.893345190925178]
Recent technological improvements make it possible to gather an increasing amount of data, both in experiments and simulations.
This has sparked interest in using advanced techniques from mathematics, statistics and computer science to deal with, and benefit from, big data.
This paper aims to present an overview of relevant machine learning methods with focus on applicability to laser-plasma physics.
arXiv Detail & Related papers (2022-11-30T15:22:40Z) - Latent Diffusion Energy-Based Model for Interpretable Text Modeling [104.85356157724372]
We introduce a novel symbiosis between the diffusion models and latent space EBMs in a variational learning framework.
We develop a geometric clustering-based regularization jointly with the information bottleneck to further improve the quality of the learned latent space.
arXiv Detail & Related papers (2022-06-13T03:41:31Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
We study how to generate molecule conformations (textiti.e., 3D structures) from a molecular graph.
We propose a novel probabilistic framework to generate valid and diverse conformations given a molecular graph.
arXiv Detail & Related papers (2021-02-20T03:17:58Z) - Visual Grounding of Learned Physical Models [66.04898704928517]
Humans intuitively recognize objects' physical properties and predict their motion, even when the objects are engaged in complicated interactions.
We present a neural model that simultaneously reasons about physics and makes future predictions based on visual and dynamics priors.
Experiments show that our model can infer the physical properties within a few observations, which allows the model to quickly adapt to unseen scenarios and make accurate predictions into the future.
arXiv Detail & Related papers (2020-04-28T17:06:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.