Machine Learning Applications to Computational Plasma Physics and Reduced-Order Plasma Modeling: A Perspective
- URL: http://arxiv.org/abs/2409.02349v1
- Date: Wed, 4 Sep 2024 00:35:55 GMT
- Title: Machine Learning Applications to Computational Plasma Physics and Reduced-Order Plasma Modeling: A Perspective
- Authors: Farbod Faraji, Maryam Reza,
- Abstract summary: This Perspective aims to outline a roadmap for transferring machine learning advances in fluid mechanics to computational plasma physics.
We begin by discussing some general fundamental aspects of ML, including the various categories of ML algorithms and the different types of problems that can be solved with the help of ML.
We then present specific examples from the use of ML in computational fluid dynamics, reviewing several insightful prior efforts.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Machine learning (ML) provides a broad spectrum of tools and architectures that enable the transformation of data from simulations and experiments into useful and explainable science, thereby augmenting domain knowledge. Furthermore, ML-enhanced numerical modelling can revamp scientific computing for real-world complex engineering systems, creating unique opportunities to examine the operation of the technologies in detail and automate their optimization and control. In recent years, ML applications have seen significant growth across various scientific domains, particularly in fluid mechanics, where ML has shown great promise in enhancing computational modeling of fluid flows. In contrast, ML applications in numerical plasma physics research remain relatively limited in scope and extent. Despite this, the close relationship between fluid mechanics and plasma physics presents a valuable opportunity to create a roadmap for transferring ML advances in fluid flow modeling to computational plasma physics. This Perspective aims to outline such a roadmap. We begin by discussing some general fundamental aspects of ML, including the various categories of ML algorithms and the different types of problems that can be solved with the help of ML. With regard to each problem type, we then present specific examples from the use of ML in computational fluid dynamics, reviewing several insightful prior efforts. We also review recent ML applications in plasma physics for each problem type. The paper discusses promising future directions and development pathways for ML in plasma modelling within the different application areas. Additionally, we point out prominent challenges that must be addressed to realize ML's full potential in computational plasma physics, including the need for cost-effective high-fidelity simulation tools for extensive data generation.
Related papers
- Energy & Force Regression on DFT Trajectories is Not Enough for Universal Machine Learning Interatomic Potentials [8.254607304215451]
Universal Machine Learning Interactomic Potentials (MLIPs) enable accelerated simulations for materials discovery.
MLIPs' inability to reliably and accurately perform large-scale molecular dynamics (MD) simulations for diverse materials.
arXiv Detail & Related papers (2025-02-05T23:04:21Z) - MAPS: Advancing Multi-Modal Reasoning in Expert-Level Physical Science [62.96434290874878]
Current Multi-Modal Large Language Models (MLLM) have shown strong capabilities in general visual reasoning tasks.
We develop a new framework, named Multi-Modal Scientific Reasoning with Physics Perception and Simulation (MAPS) based on an MLLM.
MAPS decomposes expert-level multi-modal reasoning task into physical diagram understanding via a Physical Perception Model (PPM) and reasoning with physical knowledge via a simulator.
arXiv Detail & Related papers (2025-01-18T13:54:00Z) - Benchmarking Large and Small MLLMs [71.78055760441256]
Large multimodal language models (MLLMs) have achieved remarkable advancements in understanding and generating multimodal content.
However, their deployment faces significant challenges, including slow inference, high computational cost, and impracticality for on-device applications.
Small MLLMs, exemplified by the LLava-series models and Phi-3-Vision, offer promising alternatives with faster inference, reduced deployment costs, and the ability to handle domain-specific scenarios.
arXiv Detail & Related papers (2025-01-04T07:44:49Z) - Data-Efficient Inference of Neural Fluid Fields via SciML Foundation Model [49.06911227670408]
We show that SciML foundation model can significantly improve the data efficiency of inferring real-world 3D fluid dynamics with improved generalization.
We equip neural fluid fields with a novel collaborative training approach that utilizes augmented views and fluid features extracted by our foundation model.
arXiv Detail & Related papers (2024-12-18T14:39:43Z) - Recent Advances on Machine Learning for Computational Fluid Dynamics: A Survey [51.87875066383221]
This paper introduces fundamental concepts, traditional methods, and benchmark datasets, then examine the various roles Machine Learning plays in improving CFD.
We highlight real-world applications of ML for CFD in critical scientific and engineering disciplines, including aerodynamics, combustion, atmosphere & ocean science, biology fluid, plasma, symbolic regression, and reduced order modeling.
We draw the conclusion that ML is poised to significantly transform CFD research by enhancing simulation accuracy, reducing computational time, and enabling more complex analyses of fluid dynamics.
arXiv Detail & Related papers (2024-08-22T07:33:11Z) - A Comprehensive Review of Multimodal Large Language Models: Performance and Challenges Across Different Tasks [74.52259252807191]
Multimodal Large Language Models (MLLMs) address the complexities of real-world applications far beyond the capabilities of single-modality systems.
This paper systematically sorts out the applications of MLLM in multimodal tasks such as natural language, vision, and audio.
arXiv Detail & Related papers (2024-08-02T15:14:53Z) - Physics-Informed Machine Learning for Modeling and Control of Dynamical
Systems [0.0]
Physics-informed machine learning (PIML) is a set of methods and tools that systematically integrate machine learning (ML) algorithms with physical constraints.
The basic premise of PIML is that the integration of ML and physics can yield more effective, physically consistent, and data-efficient models.
This paper aims to provide a tutorial-like overview of the recent advances in PIML for dynamical system modeling and control.
arXiv Detail & Related papers (2023-06-24T05:24:48Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
We review the existing research regarding the use of machine learning in nano-scale biomedical engineering.
The main challenges that can be formulated as ML problems are classified into the three main categories.
For each of the presented methodologies, special emphasis is given to its principles, applications, and limitations.
arXiv Detail & Related papers (2020-08-05T15:45:54Z) - Machine Learning for Condensed Matter Physics [0.0]
Condensed Matter Physics (CMP) seeks to understand the microscopic interactions of matter at the quantum and atomistic levels.
CMP overlaps with many other important branches of science, such as Chemistry, Materials Science, Statistical Physics, and High-Performance Computing.
Modern Machine Learning (ML) technology has created a compelling new area of research at the intersection of both fields.
arXiv Detail & Related papers (2020-05-28T18:44:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.