Machine Learning Applications to Computational Plasma Physics and Reduced-Order Plasma Modeling: A Perspective
- URL: http://arxiv.org/abs/2409.02349v1
- Date: Wed, 4 Sep 2024 00:35:55 GMT
- Title: Machine Learning Applications to Computational Plasma Physics and Reduced-Order Plasma Modeling: A Perspective
- Authors: Farbod Faraji, Maryam Reza,
- Abstract summary: This Perspective aims to outline a roadmap for transferring machine learning advances in fluid mechanics to computational plasma physics.
We begin by discussing some general fundamental aspects of ML, including the various categories of ML algorithms and the different types of problems that can be solved with the help of ML.
We then present specific examples from the use of ML in computational fluid dynamics, reviewing several insightful prior efforts.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Machine learning (ML) provides a broad spectrum of tools and architectures that enable the transformation of data from simulations and experiments into useful and explainable science, thereby augmenting domain knowledge. Furthermore, ML-enhanced numerical modelling can revamp scientific computing for real-world complex engineering systems, creating unique opportunities to examine the operation of the technologies in detail and automate their optimization and control. In recent years, ML applications have seen significant growth across various scientific domains, particularly in fluid mechanics, where ML has shown great promise in enhancing computational modeling of fluid flows. In contrast, ML applications in numerical plasma physics research remain relatively limited in scope and extent. Despite this, the close relationship between fluid mechanics and plasma physics presents a valuable opportunity to create a roadmap for transferring ML advances in fluid flow modeling to computational plasma physics. This Perspective aims to outline such a roadmap. We begin by discussing some general fundamental aspects of ML, including the various categories of ML algorithms and the different types of problems that can be solved with the help of ML. With regard to each problem type, we then present specific examples from the use of ML in computational fluid dynamics, reviewing several insightful prior efforts. We also review recent ML applications in plasma physics for each problem type. The paper discusses promising future directions and development pathways for ML in plasma modelling within the different application areas. Additionally, we point out prominent challenges that must be addressed to realize ML's full potential in computational plasma physics, including the need for cost-effective high-fidelity simulation tools for extensive data generation.
Related papers
- Recent Advances on Machine Learning for Computational Fluid Dynamics: A Survey [51.87875066383221]
This paper introduces fundamental concepts, traditional methods, and benchmark datasets, then examine the various roles Machine Learning plays in improving CFD.
We highlight real-world applications of ML for CFD in critical scientific and engineering disciplines, including aerodynamics, combustion, atmosphere & ocean science, biology fluid, plasma, symbolic regression, and reduced order modeling.
We draw the conclusion that ML is poised to significantly transform CFD research by enhancing simulation accuracy, reducing computational time, and enabling more complex analyses of fluid dynamics.
arXiv Detail & Related papers (2024-08-22T07:33:11Z) - A Comprehensive Review of Multimodal Large Language Models: Performance and Challenges Across Different Tasks [74.52259252807191]
Multimodal Large Language Models (MLLMs) address the complexities of real-world applications far beyond the capabilities of single-modality systems.
This paper systematically sorts out the applications of MLLM in multimodal tasks such as natural language, vision, and audio.
arXiv Detail & Related papers (2024-08-02T15:14:53Z) - Physics-Informed Machine Learning for Smart Additive Manufacturing [2.3091320511105353]
This paper focuses on the development of a physics-informed machine learning (PIML) model by integrating neural networks and physical laws to improve model accuracy, transparency, and generalization with case studies in laser metal deposition (LMD)
arXiv Detail & Related papers (2024-07-15T14:40:24Z) - Physics-Informed Machine Learning for Modeling and Control of Dynamical
Systems [0.0]
Physics-informed machine learning (PIML) is a set of methods and tools that systematically integrate machine learning (ML) algorithms with physical constraints.
The basic premise of PIML is that the integration of ML and physics can yield more effective, physically consistent, and data-efficient models.
This paper aims to provide a tutorial-like overview of the recent advances in PIML for dynamical system modeling and control.
arXiv Detail & Related papers (2023-06-24T05:24:48Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
We introduce Learning controllable Adaptive simulation for Multi-resolution Physics (LAMP) as the first full deep learning-based surrogate model.
LAMP consists of a Graph Neural Network (GNN) for learning the forward evolution, and a GNN-based actor-critic for learning the policy of spatial refinement and coarsening.
We demonstrate that our LAMP outperforms state-of-the-art deep learning surrogate models, and can adaptively trade-off computation to improve long-term prediction error.
arXiv Detail & Related papers (2023-05-01T23:20:27Z) - Challenges and opportunities for machine learning in multiscale
computational modeling [0.0]
Solving for complex multiscale systems remains computationally onerous due to the high dimensionality of the solution space.
Machine learning (ML) has emerged as a promising solution that can either serve as a surrogate for, accelerate or augment traditional numerical methods.
This paper provides a perspective on the opportunities and challenges of using ML for complex multiscale modeling and simulation.
arXiv Detail & Related papers (2023-03-22T02:04:39Z) - Deep learning applied to computational mechanics: A comprehensive
review, state of the art, and the classics [77.34726150561087]
Recent developments in artificial neural networks, particularly deep learning (DL), are reviewed in detail.
Both hybrid and pure machine learning (ML) methods are discussed.
History and limitations of AI are recounted and discussed, with particular attention at pointing out misstatements or misconceptions of the classics.
arXiv Detail & Related papers (2022-12-18T02:03:00Z) - Machine Learning Force Fields [54.48599172620472]
Machine Learning (ML) has enabled numerous advances in computational chemistry.
One of the most promising applications is the construction of ML-based force fields (FFs)
This review gives an overview of applications of ML-FFs and the chemical insights that can be obtained from them.
arXiv Detail & Related papers (2020-10-14T13:14:14Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
We review the existing research regarding the use of machine learning in nano-scale biomedical engineering.
The main challenges that can be formulated as ML problems are classified into the three main categories.
For each of the presented methodologies, special emphasis is given to its principles, applications, and limitations.
arXiv Detail & Related papers (2020-08-05T15:45:54Z) - Machine Learning for Condensed Matter Physics [0.0]
Condensed Matter Physics (CMP) seeks to understand the microscopic interactions of matter at the quantum and atomistic levels.
CMP overlaps with many other important branches of science, such as Chemistry, Materials Science, Statistical Physics, and High-Performance Computing.
Modern Machine Learning (ML) technology has created a compelling new area of research at the intersection of both fields.
arXiv Detail & Related papers (2020-05-28T18:44:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.