論文の概要: AutoST: Training-free Neural Architecture Search for Spiking
Transformers
- arxiv url: http://arxiv.org/abs/2307.00293v2
- Date: Thu, 14 Dec 2023 00:58:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-16 04:42:08.314015
- Title: AutoST: Training-free Neural Architecture Search for Spiking
Transformers
- Title(参考訳): autost: スパイキングトランスフォーマーのトレーニングフリーニューラルネットワーク検索
- Authors: Ziqing Wang, Qidong Zhao, Jinku Cui, Xu Liu, Dongkuan Xu
- Abstract要約: スパイキングトランスフォーマーはスパイキングニューラルネットワーク(SNN)のエネルギー効率とトランスフォーマーの高容量を実現する。
既存のスパイキングトランスフォーマーアーキテクチャは、顕著なアーキテクチャのギャップを示し、結果として準最適性能をもたらす。
我々は,高速なスパイキングトランスフォーマーアーキテクチャを高速に識別するために,スパイキングトランスフォーマーのトレーニング不要なNAS手法であるAutoSTを紹介した。
- 参考スコア(独自算出の注目度): 14.791412391584064
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spiking Transformers have gained considerable attention because they achieve
both the energy efficiency of Spiking Neural Networks (SNNs) and the high
capacity of Transformers. However, the existing Spiking Transformer
architectures, derived from Artificial Neural Networks (ANNs), exhibit a
notable architectural gap, resulting in suboptimal performance compared to
their ANN counterparts. Manually discovering optimal architectures is
time-consuming. To address these limitations, we introduce AutoST, a
training-free NAS method for Spiking Transformers, to rapidly identify
high-performance Spiking Transformer architectures. Unlike existing
training-free NAS methods, which struggle with the non-differentiability and
high sparsity inherent in SNNs, we propose to utilize Floating-Point Operations
(FLOPs) as a performance metric, which is independent of model computations and
training dynamics, leading to a stronger correlation with performance. Our
extensive experiments show that AutoST models outperform state-of-the-art
manually or automatically designed SNN architectures on static and neuromorphic
datasets. Full code, model, and data are released for reproduction.
- Abstract(参考訳): スパイキングトランスフォーマーはスパイキングニューラルネットワーク(snn)のエネルギー効率とトランスフォーマーの高容量の両方を達成するため、かなりの注目を集めている。
しかし、Artificial Neural Networks (ANN) から派生した既存のSpking Transformerアーキテクチャは、アーキテクチャのギャップが顕著であり、ANNのアーキテクチャに比べてパフォーマンスが劣る。
手動で最適なアーキテクチャを発見するのは時間がかかります。
これらの制約に対処するために,高速なスパイキングトランスフォーマーアーキテクチャを高速に識別するために,スパイキングトランスフォーマーのトレーニング不要なNAS方式であるAutoSTを導入する。
SNNに固有の非微分可能性と高空間性に苦しむ既存のトレーニングフリーNAS法とは違って,モデル計算やトレーニングダイナミクスとは独立に,Floating-Point Operations (FLOPs) を性能指標として活用することを提案する。
我々の広範な実験により、AutoSTモデルは静的およびニューロモルフィックなデータセット上で、手動または自動設計のSNNアーキテクチャよりも優れていることが示された。
完全なコード、モデル、データは複製のためにリリースされます。
関連論文リスト
- TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
本稿では,新しい2ストリーム機能融合 "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) アーキテクチャを提案する。
時間空間領域における意味のあるパターンをよりよく学習するために、ハイブリッド畳み込み変換器を統合する「CT」ストリームを設計する。
並行して、時間周波数領域からリッチなパターンを効率的に抽出するために、連続ウェーブレット変換(CWT)を用いて情報を2次元テンソル形式で表現する「TC」ストリームを導入する。
論文 参考訳(メタデータ) (2024-04-15T06:01:48Z) - SpikingResformer: Bridging ResNet and Vision Transformer in Spiking Neural Networks [22.665939536001797]
そこで本研究では,DSSA(Dual Spike Self-Attention)という新たな自己注意機構を提案する。
本稿では,DSSAに基づく新しいスパイキングビジョントランスフォーマーアーキテクチャであるSpikeResformerを提案する。
SpikingResformerは、他のスパイキングビジョン変換器よりも少ないパラメータと少ないエネルギー消費で高い精度を達成できることを示す。
論文 参考訳(メタデータ) (2024-03-21T11:16:42Z) - Auto-Train-Once: Controller Network Guided Automatic Network Pruning from Scratch [72.26822499434446]
オートトレインオース (Auto-Train-Once, ATO) は、DNNの計算コストと記憶コストを自動的に削減するために設計された、革新的なネットワークプルーニングアルゴリズムである。
総合的な収束解析と広範な実験を行い,本手法が様々なモデルアーキテクチャにおける最先端性能を実現することを示す。
論文 参考訳(メタデータ) (2024-03-21T02:33:37Z) - SpikingJelly: An open-source machine learning infrastructure platform
for spike-based intelligence [51.6943465041708]
スパイキングニューラルネットワーク(SNN)は、高エネルギー効率のニューロモルフィックチップに脳にインスパイアされたインテリジェンスを実現することを目的としている。
我々は、ニューロモルフィックデータセットの事前処理、深層SNNの構築、パラメータの最適化、およびニューロモルフィックチップへのSNNのデプロイのためのフルスタックツールキットをコントリビュートする。
論文 参考訳(メタデータ) (2023-10-25T13:15:17Z) - Exploring the Performance and Efficiency of Transformer Models for NLP
on Mobile Devices [3.809702129519641]
新しいディープニューラルネットワーク(DNN)アーキテクチャとアプローチが数年毎に登場し、この分野の進歩が加速している。
トランスフォーマーは、AIタスク全体で新しいレベルの精度を達成した比較的新しいモデルファミリである。
この作業は、Transformersのオンデバイス実行の現在の状態を調べて、このギャップを埋めることを目的としている。
論文 参考訳(メタデータ) (2023-06-20T10:15:01Z) - Auto-Spikformer: Spikformer Architecture Search [22.332981906087785]
自己注意機構がスパイキングニューラルネットワーク(SNN)に統合された
SpikformerのようなSNNアーキテクチャの最近の進歩は、有望な成果を示している。
最適化されたSpikformerアーキテクチャの探索を自動化する一発トランスフォーマーアーキテクチャ検索(TAS)手法であるAuto-Spikformerを提案する。
論文 参考訳(メタデータ) (2023-06-01T15:35:26Z) - Training-free Neural Architecture Search for RNNs and Transformers [0.0]
我々は、RNNアーキテクチャのトレーニング性能を予測する、隠れ共分散と呼ばれる新しいトレーニングフリーメトリックを開発した。
トランスフォーマーアーキテクチャの現在の検索空間パラダイムは、トレーニング不要なニューラルアーキテクチャサーチに最適化されていない。
論文 参考訳(メタデータ) (2023-06-01T02:06:13Z) - RWKV: Reinventing RNNs for the Transformer Era [54.716108899349614]
本稿では,変換器の効率的な並列化学習とRNNの効率的な推論を組み合わせた新しいモデルアーキテクチャを提案する。
モデルを最大14億のパラメータにスケールし、トレーニングされたRNNの中では最大で、同じサイズのTransformerと同等のRWKVのパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2023-05-22T13:57:41Z) - NAR-Former: Neural Architecture Representation Learning towards Holistic
Attributes Prediction [37.357949900603295]
本稿では,属性の全体的推定に使用できるニューラルネットワーク表現モデルを提案する。
実験の結果,提案するフレームワークは,セルアーキテクチャとディープニューラルネットワーク全体の遅延特性と精度特性を予測できることがわかった。
論文 参考訳(メタデータ) (2022-11-15T10:15:21Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上に実装された場合、有望なエネルギー効率のAIモデルである。
非分化性のため、SNNを効率的に訓練することは困難である。
本稿では,ハイパフォーマンスを実現するスパイク表現法(DSR)の差分法を提案する。
論文 参考訳(メタデータ) (2022-05-01T12:44:49Z) - A Battle of Network Structures: An Empirical Study of CNN, Transformer,
and MLP [121.35904748477421]
畳み込みニューラルネットワーク(CNN)は、コンピュータビジョンのための支配的なディープニューラルネットワーク(DNN)アーキテクチャである。
トランスフォーマーとマルチ層パーセプトロン(MLP)ベースのモデル(Vision TransformerやVision-Mixer)が新しいトレンドを導い始めた。
本稿では,これらのDNN構造について実証的研究を行い,それぞれの長所と短所を理解しようとする。
論文 参考訳(メタデータ) (2021-08-30T06:09:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。