Disentangling Hype from Practicality: On Realistically Achieving Quantum
Advantage
- URL: http://arxiv.org/abs/2307.00523v1
- Date: Sun, 2 Jul 2023 09:14:32 GMT
- Title: Disentangling Hype from Practicality: On Realistically Achieving Quantum
Advantage
- Authors: Torsten Hoefler, Thomas Haener, Matthias Troyer
- Abstract summary: We argue that small data problems and quantum algorithms with super-quadratic speedups are essential to make quantum computers useful in practice.
While most of the proposed quantum algorithms and applications do not achieve the necessary speedups to be considered practical, we already see a huge potential in material science and chemistry.
- Score: 13.163255711706864
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum computers offer a new paradigm of computing with the potential to
vastly outperform any imagineable classical computer. This has caused a gold
rush towards new quantum algorithms and hardware. In light of the growing
expectations and hype surrounding quantum computing we ask the question which
are the promising applications to realize quantum advantage. We argue that
small data problems and quantum algorithms with super-quadratic speedups are
essential to make quantum computers useful in practice. With these guidelines
one can separate promising applications for quantum computing from those where
classical solutions should be pursued. While most of the proposed quantum
algorithms and applications do not achieve the necessary speedups to be
considered practical, we already see a huge potential in material science and
chemistry. We expect further applications to be developed based on our
guidelines.
Related papers
- Benefits of non-adiabatic quantum control in quantum computation through spin qubit systems [0.0]
controllable quantum systems can be reliable building blocks for Quantum computation.
In the future, we hope to see a full fledged operationally stable quantum computer.
arXiv Detail & Related papers (2024-03-17T17:48:51Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Programming with Quantum Mechanics [0.7219077740523683]
Quantum computing is an emerging paradigm that opens a new era for exponential computational speedup.
This tutorial gives a broad view of quantum computing, abstracting most of the mathematical formalism and proposing a hands-on with the quantum programming language Ket.
arXiv Detail & Related papers (2022-10-27T14:38:42Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z) - Quantum Deformed Neural Networks [83.71196337378022]
We develop a new quantum neural network layer designed to run efficiently on a quantum computer.
It can be simulated on a classical computer when restricted in the way it entangles input states.
arXiv Detail & Related papers (2020-10-21T09:46:12Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z) - Quantum Computation [0.0]
We will discuss and summarized the core principles and practical application areas of quantum computation.
The mapping of computation onto the behavior of physical systems is a historical challenge.
We will evaluate the essential technology required for quantum computers to be able to function correctly.
arXiv Detail & Related papers (2020-06-04T11:57:18Z) - Quantum algorithms for quantum chemistry and quantum materials science [2.867517731896504]
We briefly describe central problems in chemistry and materials science, in areas of electronic structure, quantum statistical mechanics, and quantum dynamics, that are of potential interest for solution on a quantum computer.
We take a detailed snapshot of current progress in quantum algorithms for ground-state, dynamics, and thermal state simulation, and analyze their strengths and weaknesses for future developments.
arXiv Detail & Related papers (2020-01-10T22:49:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.