Large Language Models Enable Few-Shot Clustering
- URL: http://arxiv.org/abs/2307.00524v1
- Date: Sun, 2 Jul 2023 09:17:11 GMT
- Title: Large Language Models Enable Few-Shot Clustering
- Authors: Vijay Viswanathan, Kiril Gashteovski, Carolin Lawrence, Tongshuang Wu,
Graham Neubig
- Abstract summary: We show that large language models can amplify an expert's guidance to enable query-efficient, few-shot semi-supervised text clustering.
We find incorporating LLMs in the first two stages can routinely provide significant improvements in cluster quality.
- Score: 88.06276828752553
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unlike traditional unsupervised clustering, semi-supervised clustering allows
users to provide meaningful structure to the data, which helps the clustering
algorithm to match the user's intent. Existing approaches to semi-supervised
clustering require a significant amount of feedback from an expert to improve
the clusters. In this paper, we ask whether a large language model can amplify
an expert's guidance to enable query-efficient, few-shot semi-supervised text
clustering. We show that LLMs are surprisingly effective at improving
clustering. We explore three stages where LLMs can be incorporated into
clustering: before clustering (improving input features), during clustering (by
providing constraints to the clusterer), and after clustering (using LLMs
post-correction). We find incorporating LLMs in the first two stages can
routinely provide significant improvements in cluster quality, and that LLMs
enable a user to make trade-offs between cost and accuracy to produce desired
clusters. We release our code and LLM prompts for the public to use.
Related papers
- Text Clustering as Classification with LLMs [6.030435811868953]
This study presents a novel framework for text clustering that effectively leverages the in-context learning capacity of Large Language Models (LLMs)
Instead of fine-tuning embedders, we propose to transform the text clustering into a classification task via LLM.
Our framework has been experimentally proven to achieve comparable or superior performance to state-of-the-art clustering methods.
arXiv Detail & Related papers (2024-09-30T16:57:34Z) - A3S: A General Active Clustering Method with Pairwise Constraints [66.74627463101837]
A3S features strategic active clustering adjustment on the initial cluster result, which is obtained by an adaptive clustering algorithm.
In extensive experiments across diverse real-world datasets, A3S achieves desired results with significantly fewer human queries.
arXiv Detail & Related papers (2024-07-14T13:37:03Z) - Context-Aware Clustering using Large Language Models [20.971691166166547]
We propose CACTUS (Context-Aware ClusTering with aUgmented triplet losS) for efficient and effective supervised clustering of entity subsets.
This paper introduces a novel approach towards clustering entity subsets using Large Language Models (LLMs) by capturing context via a scalable inter-entity attention mechanism.
arXiv Detail & Related papers (2024-05-02T03:50:31Z) - Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
We devise an efficient algorithm that recovers clusters using the observed labels.
We present Instance-Adaptive Clustering (IAC), the first algorithm whose performance matches these lower bounds both in expectation and with high probability.
arXiv Detail & Related papers (2023-06-18T08:46:06Z) - ClusterLLM: Large Language Models as a Guide for Text Clustering [45.835625439515]
We introduce ClusterLLM, a novel text clustering framework that leverages feedback from an instruction-tuned large language model, such as ChatGPT.
ClusterLLM consistently improves clustering quality, at an average cost of $0.6 per dataset.
arXiv Detail & Related papers (2023-05-24T08:24:25Z) - A Generalized Framework for Predictive Clustering and Optimization [18.06697544912383]
Clustering is a powerful and extensively used data science tool.
In this article, we define a generalized optimization framework for predictive clustering.
We also present a joint optimization strategy that exploits mixed-integer linear programming (MILP) for global optimization.
arXiv Detail & Related papers (2023-05-07T19:56:51Z) - Oracle-guided Contrastive Clustering [28.066047266687058]
Oracle-guided Contrastive Clustering(OCC) is proposed to cluster by interactively making pairwise same-cluster" queries to oracles with distinctive demands.
To the best of our knowledge, it is the first deep framework to perform personalized clustering.
arXiv Detail & Related papers (2022-11-01T12:05:12Z) - DeepCluE: Enhanced Image Clustering via Multi-layer Ensembles in Deep
Neural Networks [53.88811980967342]
This paper presents a Deep Clustering via Ensembles (DeepCluE) approach.
It bridges the gap between deep clustering and ensemble clustering by harnessing the power of multiple layers in deep neural networks.
Experimental results on six image datasets confirm the advantages of DeepCluE over the state-of-the-art deep clustering approaches.
arXiv Detail & Related papers (2022-06-01T09:51:38Z) - You Never Cluster Alone [150.94921340034688]
We extend the mainstream contrastive learning paradigm to a cluster-level scheme, where all the data subjected to the same cluster contribute to a unified representation.
We define a set of categorical variables as clustering assignment confidence, which links the instance-level learning track with the cluster-level one.
By reparametrizing the assignment variables, TCC is trained end-to-end, requiring no alternating steps.
arXiv Detail & Related papers (2021-06-03T14:59:59Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.