Driven-dissipative Quantum Dynamics in Cavity Magnon-Polariton System
- URL: http://arxiv.org/abs/2107.10444v2
- Date: Sat, 16 Oct 2021 04:25:24 GMT
- Title: Driven-dissipative Quantum Dynamics in Cavity Magnon-Polariton System
- Authors: Guogan Zhao, Yong Wang, X.-F. Qian
- Abstract summary: The dynamics of arbitrary-order quantum correlations in a cavity magnon-polariton system are investigated.
Results demonstrate the rich higher-order quantum dynamics induced by magnetic light-matter interaction.
- Score: 4.22183654884537
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The dynamics of arbitrary-order quantum correlations in a cavity
magnon-polariton system are investigated based on the quantum master equation
in the coherent state representation. The phenomena of Rabi-like oscillation
and level repulsion of the average cavity-photon number agree remarkably well
with existing experimental observations. The competing nature of coherent and
incoherent components in these two cases is further revealed by the
second-order quantum coherence of the cavity photons and magnons, which can be
systematically tuned by the driving microwave and thermal bath. Our results
demonstrate the rich higher-order quantum dynamics induced by magnetic
light-matter interaction, and serve as an indispensable step toward exploring
nonclassical states for cavity photons and magnons in quantum cavity magnonics.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Nonequilibrium dynamics of the Jaynes-Cummings dimer [0.0]
We investigate the nonequilibrium dynamics of a Josephson-coupled Jaynes-Cummings dimer in the presence of Kerr nonlinearity.
Different types of transitions between the dynamical states lead to the self-trapping phenomenon.
For a particular "self-trapped" state, the mutual information between the atomic qubits exhibits a direct correlation with the photon population imbalance.
arXiv Detail & Related papers (2023-07-02T16:49:10Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Photon generation and entanglement in a double superconducting cavity [105.54048699217668]
We study the dynamical Casimir effect in a double superconducting cavity in a quantum electrodynamics architecture.
We study the creation of photons when the walls oscillate harmonically with a small amplitude.
arXiv Detail & Related papers (2022-07-18T16:43:47Z) - Nonclassical correlated deterministic single-photon pairs for a trapped
atom in bimodal cavities [0.0]
Single photons and single-photon pairs, inherently nonclassical in their nature, are fundamental elements of quantum sciences and technologies.
We propose to realize the nonclassical correlated deterministic photon pairs at the single-photon level for a single atom trapped in bimodal cavities.
arXiv Detail & Related papers (2022-04-15T08:05:26Z) - Polariton Creation in Coupled Cavity Arrays with Spectrally Disordered Emitters [0.0]
Integrated photonics has been a promising platform for analog quantum simulation of condensed matter phenomena in strongly correlated systems.
We study energy band formation and wavefunction properties in the open quantum Tavis-Cummings-Hubbard framework.
New metrics combined with the Effective Hamiltonian approach prove to be a powerful toolbox for cavity quantum electrodynamical engineering of solid-state systems.
arXiv Detail & Related papers (2021-12-28T05:08:27Z) - 0D-2D Heterostructure for making very Large Quantum Registers using
itinerant Bose-Einstein Condensate of Excitons [0.08399688944263842]
Presence of coherent resonant tunneling in quantum dot (zero-dimensional) - quantum well (two-dimensional) heterostructure is necessary to explain electrical polarization of excitonic dipoles over a macroscopically large area.
Observations point to experimental control of macroscopically large, quantum state of a two-component Bose-Einstein condensate of excitons in this quantum dot - quantum well heterostructure.
arXiv Detail & Related papers (2021-07-28T17:42:12Z) - Exciton-photon complexes and dynamics in the concurrent strong-weak
coupling regime of singular site-controlled cavity quantum electrodynamics [13.810406780342314]
We investigate the exciton complexes photoluminescence, dynamics and photon statistics in the concurrent strong weak coupling regime.
We demonstrate the strong and weak coupling can coexist dynamically, as a form of intermediate regime mediated by phonon scattering.
This study suggests our device has potential for new and subtle cavity quantum electrodynamical phenomena, cavity enhanced indistinguishable single photon generation, and cluster state generation via the exciton-photon complexes for quantum networks.
arXiv Detail & Related papers (2021-07-14T07:21:57Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.