論文の概要: Real-time Vision-based Navigation for a Robot in an Indoor Environment
- arxiv url: http://arxiv.org/abs/2307.00666v1
- Date: Sun, 2 Jul 2023 21:01:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-05 14:45:02.777521
- Title: Real-time Vision-based Navigation for a Robot in an Indoor Environment
- Title(参考訳): 室内環境におけるロボットのリアルタイム視覚に基づくナビゲーション
- Authors: Sagar Manglani (Stanford University)
- Abstract要約: このシステムは、視覚に基づく技術と高度な経路計画アルゴリズムを利用して、障害物を避けながらロボットが目的地に向かって移動できるようにする。
この知見は、屋内ロボットナビゲーションの進歩に寄与し、リアルタイムで自律的なナビゲーションのための視覚ベースの技術の可能性を示している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a study on the development of an obstacle-avoidance
navigation system for autonomous navigation in home environments. The system
utilizes vision-based techniques and advanced path-planning algorithms to
enable the robot to navigate toward the destination while avoiding obstacles.
The performance of the system is evaluated through qualitative and quantitative
metrics, highlighting its strengths and limitations. The findings contribute to
the advancement of indoor robot navigation, showcasing the potential of
vision-based techniques for real-time, autonomous navigation.
- Abstract(参考訳): 本稿では,家庭環境における自律ナビゲーションのための障害物回避ナビゲーションシステムの開発について述べる。
このシステムは視覚に基づく技術と高度な経路計画アルゴリズムを使用して、障害物を避けながら目的地に向かってロボットが移動できるようにする。
システムの性能は質的かつ定量的な指標によって評価され、その強みと限界が強調される。
この結果は屋内ロボットナビゲーションの進歩に寄与し、リアルタイム自律ナビゲーションにおける視覚に基づく技術の可能性を示している。
関連論文リスト
- Advancing Autonomous Driving Perception: Analysis of Sensor Fusion and Computer Vision Techniques [0.0]
このプロジェクトは、自動運転ロボットの理解とナビゲーション能力の向上に焦点を当てている。
既存の検出と追跡アルゴリズムを用いて、未知のマップ2Dマップへのより良いナビゲーションを実現する方法について検討する。
論文 参考訳(メタデータ) (2024-11-15T19:11:58Z) - Aligning Robot Navigation Behaviors with Human Intentions and Preferences [2.9914612342004503]
この論文は,「自律移動ロボットのナビゲーション行動と人間の意図と嗜好を一致させるために,機械学習手法をどのように利用できるのか?」という疑問に答えることを目的としている。
第一に、この論文は、意図したナビゲーションタスクの人間が提供する実演を模倣することにより、ナビゲーション行動を学ぶための新しいアプローチを導入している。
第二に、この論文は、視覚的な地形認識を自己監督的に学習することで、移動ロボットの地形認識オフロードナビゲーションを強化する2つのアルゴリズムを導入している。
論文 参考訳(メタデータ) (2024-09-16T03:45:00Z) - Floor extraction and door detection for visually impaired guidance [78.94595951597344]
未知の環境で障害物のない経路を見つけることは、視覚障害者や自律ロボットにとって大きなナビゲーション問題である。
コンピュータビジョンシステムに基づく新しいデバイスは、障害のある人が安全な環境で未知の環境でナビゲートすることの難しさを克服するのに役立つ。
本研究では,視覚障害者のためのナビゲーションシステムの構築につながるセンサとアルゴリズムの組み合わせを提案する。
論文 参考訳(メタデータ) (2024-01-30T14:38:43Z) - ETPNav: Evolving Topological Planning for Vision-Language Navigation in
Continuous Environments [56.194988818341976]
視覚言語ナビゲーションは、エージェントが環境中をナビゲートするための指示に従う必要があるタスクである。
本研究では,1)環境を抽象化し,長距離航法計画を生成する能力,2)連続環境における障害物回避制御能力の2つの重要なスキルに焦点を当てたETPNavを提案する。
ETPNavは、R2R-CEとRxR-CEデータセットの先行技術よりも10%以上、20%改善されている。
論文 参考訳(メタデータ) (2023-04-06T13:07:17Z) - Autonomous Aerial Robot for High-Speed Search and Intercept Applications [86.72321289033562]
高速物体把握のための完全自律飛行ロボットが提案されている。
追加のサブタスクとして、我々のシステムは、表面に近い極にある気球を自律的にピアスすることができる。
我々のアプローチは、挑戦的な国際競争で検証され、優れた結果が得られました。
論文 参考訳(メタデータ) (2021-12-10T11:49:51Z) - Coupling Vision and Proprioception for Navigation of Legged Robots [65.59559699815512]
我々は視覚と受容の相補的な強みを利用して、脚のあるロボットでポイントゴールナビゲーションを実現する。
車輪付きロボット(LoCoBot)のベースラインよりも優れた性能を示す。
また,センサーと計算能力を備えた四足歩行ロボットに,我々のシステムを実環境に展開することも示す。
論文 参考訳(メタデータ) (2021-12-03T18:59:59Z) - Augmented reality navigation system for visual prosthesis [67.09251544230744]
反応ナビゲーションと経路計画のソフトウェアを組み込んだ視覚補綴用拡張現実ナビゲーションシステムを提案する。
対象を地図上に配置し、対象の軌道を計画し、対象に示し、障害なく再計画する。
その結果,目標を達成するための時間と距離を減らし,障害物衝突の回数を大幅に減らし,航法性能の向上を図っている。
論文 参考訳(メタデータ) (2021-09-30T09:41:40Z) - Towards bio-inspired unsupervised representation learning for indoor
aerial navigation [4.26712082692017]
本研究では,生物にインスパイアされた深層学習アルゴリズムによる同時位置決めとマッピング(SLAM)とそのドローンナビゲーションシステムへの応用について述べる。
本稿では,低次元潜在状態記述子を出力し,知覚的エイリアスに対する感度を軽減し,高効率な組込みハードウェアの開発を行う教師なし表現学習手法を提案する。
設計したアルゴリズムは,室内の倉庫環境において収集されたデータセットに基づいて評価され,最初の結果はロバストな屋内航法の実現可能性を示している。
論文 参考訳(メタデータ) (2021-06-17T08:42:38Z) - Robot Perception enables Complex Navigation Behavior via Self-Supervised
Learning [23.54696982881734]
本稿では、強化学習(RL)によるアクティブな目標駆動ナビゲーションタスクのためのロボット認識システムの統合手法を提案する。
提案手法は,1つの画像列から直接自己スーパービジョンを用いて得られる,コンパクトな動きと視覚知覚データを時間的に組み込む。
我々は,新しいインタラクティブなCityLearnフレームワークを用いて,実世界の運転データセットであるKITTIとOxford RobotCarのアプローチを実証した。
論文 参考訳(メタデータ) (2020-06-16T07:45:47Z) - APPLD: Adaptive Planner Parameter Learning from Demonstration [48.63930323392909]
本稿では,既存のナビゲーションシステムを新しい複雑な環境に適用可能な,適応プランナー学習(Adaptive Planner Learning from Demonstration)のAPPLDを紹介する。
APPLDは異なる環境で異なるナビゲーションシステムを実行する2つのロボットで検証されている。
実験結果から,APPLDはナビゲーションシステムよりも,デフォルトパラメータや専門家パラメータ,さらには人間実証者自体よりも優れていることが示された。
論文 参考訳(メタデータ) (2020-03-31T21:15:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。