論文の概要: Filter Bubbles in Recommender Systems: Fact or Fallacy -- A Systematic
Review
- arxiv url: http://arxiv.org/abs/2307.01221v1
- Date: Sun, 2 Jul 2023 13:41:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-06 19:47:45.816612
- Title: Filter Bubbles in Recommender Systems: Fact or Fallacy -- A Systematic
Review
- Title(参考訳): Recommenderシステムにおけるフィルタバブル - Fact or Fallacy -- システムレビュー
- Authors: Qazi Mohammad Areeb, Mohammad Nadeem, Shahab Saquib Sohail, Raza Imam,
Faiyaz Doctor, Yassine Himeur, Amir Hussain and Abbes Amira
- Abstract要約: フィルターバブルとは、インターネットのカスタマイズによって様々な意見や素材から個人を効果的に隔離する現象を指す。
我々は,レコメンデータシステムにおけるフィルタバブルの話題について,系統的な文献レビューを行う。
本稿では,フィルタバブルの影響を緩和する機構を提案し,多様性をレコメンデーションに組み込むことで,この問題を緩和できる可能性を実証する。
- 参考スコア(独自算出の注目度): 7.121051191777698
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A filter bubble refers to the phenomenon where Internet customization
effectively isolates individuals from diverse opinions or materials, resulting
in their exposure to only a select set of content. This can lead to the
reinforcement of existing attitudes, beliefs, or conditions. In this study, our
primary focus is to investigate the impact of filter bubbles in recommender
systems. This pioneering research aims to uncover the reasons behind this
problem, explore potential solutions, and propose an integrated tool to help
users avoid filter bubbles in recommender systems. To achieve this objective,
we conduct a systematic literature review on the topic of filter bubbles in
recommender systems. The reviewed articles are carefully analyzed and
classified, providing valuable insights that inform the development of an
integrated approach. Notably, our review reveals evidence of filter bubbles in
recommendation systems, highlighting several biases that contribute to their
existence. Moreover, we propose mechanisms to mitigate the impact of filter
bubbles and demonstrate that incorporating diversity into recommendations can
potentially help alleviate this issue. The findings of this timely review will
serve as a benchmark for researchers working in interdisciplinary fields such
as privacy, artificial intelligence ethics, and recommendation systems.
Furthermore, it will open new avenues for future research in related domains,
prompting further exploration and advancement in this critical area.
- Abstract(参考訳): フィルターバブルとは、インターネットのカスタマイズによって様々な意見や素材から個人を効果的に隔離し、特定のコンテンツだけを露出させる現象を指す。
これは既存の態度、信念、あるいは状況の強化につながる可能性がある。
本研究では,レコメンダシステムにおけるフィルタ気泡の影響について検討する。
この先駆的な研究は、この問題の原因を明らかにし、潜在的な解決策を探求し、レコメンダシステムにおけるフィルタバブルを避けるための統合ツールを提案することを目的としている。
この目的を達成するために,レコメンダシステムにおけるフィルタバブルの話題に関する体系的文献レビューを行う。
レビューされた記事は慎重に分析され、分類され、統合アプローチの開発を知らせる貴重な洞察を提供する。
特に,レコメンデーションシステムにおけるフィルタバブルの証拠を明らかにし,その存在に寄与するバイアスを浮き彫りにした。
さらに,フィルタバブルの影響を緩和する機構を提案し,多様性をレコメンデーションに取り入れることで,この問題を緩和できる可能性を実証する。
このタイムリーなレビューの結果は、プライバシ、人工知能倫理、レコメンデーションシステムといった学際的な分野で働く研究者のベンチマークとして役立つだろう。
さらに、関係分野における今後の研究の新たな道を開き、この重要分野のさらなる探究と発展を促す。
関連論文リスト
- Source Echo Chamber: Exploring the Escalation of Source Bias in User, Data, and Recommender System Feedback Loop [65.23044868332693]
本稿では,ソースバイアスがレコメンデーションシステムの領域に与える影響について検討する。
ソースバイアスの頻度を示し、ソースバイアスを増幅した潜在的デジタルエコーチャンバーを明らかにする。
我々は,HGCとAIGCの両方に対してモデル不均一性を維持するブラックボックスデバイアス法を導入する。
論文 参考訳(メタデータ) (2024-05-28T09:34:50Z) - A First Look at Selection Bias in Preference Elicitation for Recommendation [64.44255178199846]
選好選好における選好バイアスの影響について検討した。
大きなハードルは、好みの推論インタラクションを持つ公開データセットがないことです。
本稿では,トピックに基づく選好提案プロセスのシミュレーションを提案する。
論文 参考訳(メタデータ) (2024-05-01T14:56:56Z) - Uncovering the Deep Filter Bubble: Narrow Exposure in Short-Video
Recommendation [30.395376392259497]
フィルタバブルは、オンラインコンテンツプラットフォームのコンテキスト内で広く研究されている。
ショートビデオプラットフォームの増加に伴い、フィルターバブルはさらに注目されている。
論文 参考訳(メタデータ) (2024-03-07T14:14:40Z) - Impression-Aware Recommender Systems [57.38537491535016]
新たなデータソースは、レコメンデーションシステムの品質を改善する新しい機会をもたらす。
研究者はインプレッションを使ってユーザーの好みを洗練させ、推奨システム研究の現在の制限を克服することができる。
本稿ではインプレッションを用いたレコメンデーションシステムに関する体系的な文献レビューを行う。
論文 参考訳(メタデータ) (2023-08-15T16:16:02Z) - BHEISR: Nudging from Bias to Balance -- Promoting Belief Harmony by
Eliminating Ideological Segregation in Knowledge-based Recommendations [5.795636579831129]
主な目的は,フィルタバブルによる有害な影響を最小限に抑えつつ,ユーザの信念バランスを打つことである。
BHEISRモデルは、民主的かつ透明な原則を支持しながら、ナッジ理論から原則を取り入れている。
論文 参考訳(メタデータ) (2023-07-06T06:12:37Z) - Mitigating Filter Bubbles within Deep Recommender Systems [2.3590112541068575]
推薦システムは、様々な視点からユーザーを知的に隔離したり、フィルターバブルを引き起こすことが知られている。
このフィルタバブル効果を,ユーザとテムのインタラクション履歴に基づいて,様々なデータポイントを分類し,緩和する。
我々は、このフィルタバブル効果を、リコメンデータシステムを再訓練することで、精度を損なうことなく軽減する。
論文 参考訳(メタデータ) (2022-09-16T22:00:10Z) - Fairness in Recommender Systems: Research Landscape and Future
Directions [119.67643184567623]
本稿は,近年の地域におけるフェアネスの概念と概念について概観する。
この分野での研究が現在どのように行われているのかを概観する。
全体として、最近の研究成果の分析は、ある研究のギャップを示している。
論文 参考訳(メタデータ) (2022-05-23T08:34:25Z) - A Review on Pushing the Limits of Baseline Recommendation Systems with
the integration of Opinion Mining & Information Retrieval Techniques [0.0]
Recommendation Systemsでは、利用者の期待にタイムリーかつ関連性がありながら、コミュニティ内のトレンドアイテムを識別することができる。
より優れた品質のレコメンデーションを達成するために、ディープラーニングの手法が提案されている。
研究者たちは、最も効果的なレコメンデーションを提供するために、標準レコメンデーションシステムの能力を拡大しようと試みている。
論文 参考訳(メタデータ) (2022-05-03T22:13:33Z) - PURS: Personalized Unexpected Recommender System for Improving User
Satisfaction [76.98616102965023]
本稿では、予期せぬことを推奨プロセスに組み込んだ、新しいPersonalized Unexpected Recommender System(PURS)モデルについて述べる。
3つの実世界のデータセットに対する大規模なオフライン実験は、提案されたPURSモデルが最先端のベースラインアプローチを大幅に上回っていることを示している。
論文 参考訳(メタデータ) (2021-06-05T01:33:21Z) - Echo Chambers in Collaborative Filtering Based Recommendation Systems [1.5140493624413542]
我々は、MovieLensデータセットのユーザに対して協調フィルタリングアルゴリズムによって与えられるレコメンデーションをシミュレートする。
システム生成レコメンデーションの長期曝露は、コンテンツの多様性を著しく低下させる。
我々の研究は、これらのエコーチャンバが確立すれば、個々のユーザが自分の評価ベクトルのみを操作することで、突破するのは難しいことを示唆している。
論文 参考訳(メタデータ) (2020-11-08T02:35:47Z) - A Survey on Knowledge Graph-Based Recommender Systems [65.50486149662564]
我々は知識グラフに基づく推薦システムの体系的な調査を行う。
論文は、知識グラフを正確かつ説明可能なレコメンデーションにどのように活用するかに焦点を当てる。
これらの作業で使用されるデータセットを紹介します。
論文 参考訳(メタデータ) (2020-02-28T02:26:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。