Nontrivial worldline winding in non-Hermitian quantum systems
- URL: http://arxiv.org/abs/2307.01260v2
- Date: Sun, 10 Dec 2023 16:04:13 GMT
- Title: Nontrivial worldline winding in non-Hermitian quantum systems
- Authors: Shi-Xin Hu, Yongxu Fu, Yi Zhang
- Abstract summary: We investigate non-Hermitian physics in interacting quantum systems, e.g., various non-Hermitian quantum spin chains.
We study the direct physical implications of such nontrivial worldline winding, which bring additional, potentially quasi-long-range contributions to the entanglement entropy.
- Score: 3.8601741392210434
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Amid the growing interest in non-Hermitian quantum systems, non-interacting
models have received the most attention. Here, through the stochastic series
expansion quantum Monte Carlo method, we investigate non-Hermitian physics in
interacting quantum systems, e.g., various non-Hermitian quantum spin chains.
While calculations yield consistent numerical results under open boundary
conditions, non-Hermitian quantum systems under periodic boundary conditions
observe an unusual concentration of imaginary-time worldlines over nontrivial
winding and require enhanced ergodicity between winding-number sectors for
proper convergences. Such nontrivial worldline winding is an emergent physical
phenomenon that also exists in other non-Hermitian models and analytical
approaches. Alongside the non-Hermitian skin effect and the point-gap
spectroscopy, it largely extends the identification and analysis of
non-Hermitian topological phenomena to quantum systems with interactions,
finite temperatures, biorthogonal basis, and periodic boundary conditions in a
novel and controlled fashion. Finally, we study the direct physical
implications of such nontrivial worldline winding, which bring additional,
potentially quasi-long-range contributions to the entanglement entropy.
Related papers
- Entanglement Hamiltonian and effective temperature of non-Hermitian quantum spin ladders [0.0]
We analytically investigate the entanglement Hamiltonian and entanglement energy spectrum of a non-Hermitian spin ladder.
Our findings provide new insights into quantum entanglement in non-Hermitian systems.
arXiv Detail & Related papers (2024-09-25T16:20:24Z) - Exceptional point and hysteresis trajectories in cold Rydberg atomic gases [33.90303571473806]
Long-range interactions induce an additional dissipation channel, resulting in non-Hermitian many-body dynamics.
Here, we report experimental observation of interaction-induced exceptional points in cold Rydberg atomic gases.
arXiv Detail & Related papers (2024-08-06T11:35:06Z) - Quantum coarsening and collective dynamics on a programmable quantum simulator [27.84599956781646]
We experimentally study collective dynamics across a (2+1)D Ising quantum phase transition.
By deterministically preparing and following the evolution of ordered domains, we show that the coarsening is driven by the curvature of domain boundaries.
We quantitatively explore these phenomena and further observe long-lived oscillations of the order parameter, corresponding to an amplitude (Higgs) mode.
arXiv Detail & Related papers (2024-07-03T16:29:12Z) - Transport and integrability-breaking in non-Hermitian many-body quantum
systems [0.0]
We study the impact of non-unitary dynamics on the emergent hydrodynamics in quantum systems with a global conservation law.
We show how linear-response correlation functions can be generalized and interpreted in the case of non-Hermitian systems.
arXiv Detail & Related papers (2024-03-04T02:26:30Z) - Quantum criticality at the boundary of the non-Hermitian regime of a
Floquet system [4.144331441157407]
We investigate the dynamics of quantum scrambling in a non-Hermitian quantum kicked rotor.
The rates of the linear growth are found to diverge to infinity, indicating the existence of quantum criticality at the boundary of the non-Hermitian regime.
arXiv Detail & Related papers (2023-07-02T03:20:56Z) - Fixed lines in a non-Hermitian Kitaev chain with spatially balanced
pairing processes [0.0]
Exact solutions for non-Hermitian quantum many-body systems are rare but may provide valuable insights into the interplay between Hermitian and non-Hermitian components.
We report our investigation of a non-Hermitian variant of a p-wave Kitaev chain by introducing staggered imbalanced pair creation and quench terms.
arXiv Detail & Related papers (2023-04-30T14:41:42Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Observation of partial and infinite-temperature thermalization induced
by repeated measurements on a quantum hardware [62.997667081978825]
We observe partial and infinite-temperature thermalization on a quantum superconducting processor.
We show that the convergence does not tend to a completely mixed (infinite-temperature) state, but to a block-diagonal state in the observable basis.
arXiv Detail & Related papers (2022-11-14T15:18:11Z) - Entanglement timescale and mixedness in non-Hermitian quantum systems [0.0]
We discuss the short-time perturbative expansion of the linear entropy for finite-dimensional quantum systems.
We find that the non-Hermitian Hamiltonian enhances the short-time dynamics of the linear entropy for the considered input states.
Our results find applications to non-Hermitian quantum sensing, quantum thermodynamics of non-Hermitian systems, and $mathcalPT$-symmetric quantum field theory.
arXiv Detail & Related papers (2022-09-23T15:53:07Z) - Continuous phase transition induced by non-Hermiticity in the quantum
contact process model [44.58985907089892]
How the property of quantum many-body system especially the phase transition will be affected by the non-hermiticity remains unclear.
We show that there is a continuous phase transition induced by the non-hermiticity in QCP.
We observe that the order parameter and susceptibility display infinitely even for finite size system, since non-hermiticity endows universality many-body system with different singular behaviour from classical phase transition.
arXiv Detail & Related papers (2022-09-22T01:11:28Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.