Quantum criticality at the boundary of the non-Hermitian regime of a
Floquet system
- URL: http://arxiv.org/abs/2307.00462v1
- Date: Sun, 2 Jul 2023 03:20:56 GMT
- Title: Quantum criticality at the boundary of the non-Hermitian regime of a
Floquet system
- Authors: Wen-Lei Zhao and Jie Liu
- Abstract summary: We investigate the dynamics of quantum scrambling in a non-Hermitian quantum kicked rotor.
The rates of the linear growth are found to diverge to infinity, indicating the existence of quantum criticality at the boundary of the non-Hermitian regime.
- Score: 4.144331441157407
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate both analytically and numerically the dynamics of quantum
scrambling, characterized by the out-of-time ordered correlators (OTOCs), in a
non-Hermitian quantum kicked rotor subject to quantum resonance conditions.
Analytical expressions for OTOCs as a function of time are obtained,
demonstrating a sudden transition from the linear growth to quadratic growth
when the non-Hermitian parameter decays to zero. At this critical point, the
rates of the linear growth are found to diverge to infinity, indicating the
existence of quantum criticality at the boundary of the non-Hermitian regime.
The underlying mechanism of this quantum criticality is uncovered, and possible
applications in quantum metrology are discussed.
Related papers
- Attractive-repulsive interaction in coupled quantum oscillators [14.37149160708975]
We find an interesting symmetry-breaking transition from quantum limit cycle oscillation to quantum inhomogeneous steady state.
This transition is contrary to the previously known symmetry-breaking transition from quantum homogeneous to inhomogeneous steady state.
Remarkably, we find the generation of entanglement associated with the symmetry-breaking transition that has no analogue in the classical domain.
arXiv Detail & Related papers (2024-08-23T10:45:19Z) - Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron [79.16635054977068]
We study an artificial neuron circuit containing a quantum memristor in the presence of relaxation and dephasing.
We demonstrate that this physical principle enables hysteretic behavior of the current-voltage characteristics of the quantum device.
arXiv Detail & Related papers (2024-05-01T16:47:23Z) - Speed limits and thermodynamic uncertainty relations for quantum systems governed by non-Hermitian Hamiltonian [1.6574413179773757]
Non-Hermitian Hamiltonians play a crucial role in describing open quantum systems and nonequilibrium dynamics.
We derive trade-off relations for systems governed by non-Hermitian Hamiltonians, focusing on the Margolus-Levitin-type and Mandelstam-Tamm-type bounds.
arXiv Detail & Related papers (2024-04-25T08:00:12Z) - Critical quantum geometric tensors of parametrically-driven nonlinear
resonators [5.743814444071535]
Parametrically driven nonlinear resonators represent building block for realizing fault-tolerant quantum computation.
Critical phenomena can occur without interaction with any other quantum system.
This work reveals that the quantum metric and Berry curvature display diverging behaviors across the quantum phase transition.
arXiv Detail & Related papers (2023-12-22T03:31:58Z) - Nontrivial worldline winding in non-Hermitian quantum systems [3.8601741392210434]
We investigate non-Hermitian physics in interacting quantum systems, e.g., various non-Hermitian quantum spin chains.
We study the direct physical implications of such nontrivial worldline winding, which bring additional, potentially quasi-long-range contributions to the entanglement entropy.
arXiv Detail & Related papers (2023-07-03T18:00:02Z) - Quantifying measurement-induced quantum-to-classical crossover using an
open-system entanglement measure [49.1574468325115]
We study the entanglement of a single particle under continuous measurements.
We find that the entanglement at intermediate time scales shows the same qualitative behavior as a function of the measurement strength.
arXiv Detail & Related papers (2023-04-06T09:45:11Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Quantum Fisher information measurement and verification of the quantum
Cram\'er-Rao bound in a solid-state qubit [11.87072483257275]
We experimentally demonstrate near saturation of the quantum Cram'er-Rao bound in the phase estimation of a solid-state spin system.
This is achieved by comparing the experimental uncertainty in phase estimation with an independent measurement of the related quantum Fisher information.
arXiv Detail & Related papers (2020-03-18T17:51:06Z) - From stochastic spin chains to quantum Kardar-Parisi-Zhang dynamics [68.8204255655161]
We introduce the asymmetric extension of the Quantum Symmetric Simple Exclusion Process.
We show that the time-integrated current of fermions defines a height field which exhibits a quantum non-linear dynamics.
arXiv Detail & Related papers (2020-01-13T14:30:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.