Transport and integrability-breaking in non-Hermitian many-body quantum
systems
- URL: http://arxiv.org/abs/2403.01681v1
- Date: Mon, 4 Mar 2024 02:26:30 GMT
- Title: Transport and integrability-breaking in non-Hermitian many-body quantum
systems
- Authors: Dylan E. Mahoney, Jonas Richter
- Abstract summary: We study the impact of non-unitary dynamics on the emergent hydrodynamics in quantum systems with a global conservation law.
We show how linear-response correlation functions can be generalized and interpreted in the case of non-Hermitian systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Describing open quantum systems in terms of effective non-Hermitian
Hamiltonians gives rise to non-unitary time evolution. In this paper, we study
the impact of non-unitary dynamics on the emergent hydrodynamics in quantum
systems with a global conservation law. To this end, we demonstrate how
linear-response correlation functions can be generalized and interpreted in the
case of non-Hermitian systems. Moreover, we show that dynamical quantum
typicality provides an efficient numerical approach to evaluate such
correlation functions, even though the non-unitary dynamics leads to subtleties
that are absent in the Hermitian case. As a point of reference for our
analysis, we consider the Hermitian spin-$1/2$ XXZ chain, whose
high-temperature transport properties have been characterized extensively in
recent years. Here, we explore the resulting hydrodynamics for different
non-Hermitian perturbations of the XXZ chain. We also discuss the role of
integrability by studying the complex energy-level statistics of the
non-Hermitian quantum models.
Related papers
- Emergent Anomalous Hydrodynamics at Infinite Temperature in a Long-Range XXZ Model [14.297989605089663]
We find anomalous hydrodynamics in a spin-1/2 XXZ chain with power-law couplings.
We quantify the degree of quantum chaos using the Kullback-Leibler divergence.
This work offers another deep understanding of emergent anomalous transport phenomena in a wider range of non-integrable quantum many-body systems.
arXiv Detail & Related papers (2024-03-26T17:50:04Z) - Quantized Thouless pumps protected by interactions in dimerized Rydberg tweezer arrays [41.94295877935867]
In the noninteracting case, quantized Thouless pumps can only occur when a topological singularity is encircled adiabatically.
In the presence of interactions, such topological transport can even persist for exotic paths in which the system gets arbitrarily close to the noninteracting singularity.
arXiv Detail & Related papers (2024-02-14T16:58:21Z) - Eigenstate Thermalization and its breakdown in Quantum Spin Chains with
Inhomogeneous Interactions [7.257279589646522]
The eigenstate thermalization hypothesis (ETH) is a successful theory that establishes the criteria for ergodicity and thermalization in isolated quantum many-body systems.
We investigate the thermalization properties of spin-$ 1/2 $ XXZ chain with linearly-inhomogeneous interactions.
arXiv Detail & Related papers (2023-10-30T08:12:21Z) - Nontrivial worldline winding in non-Hermitian quantum systems [3.8601741392210434]
We investigate non-Hermitian physics in interacting quantum systems, e.g., various non-Hermitian quantum spin chains.
We study the direct physical implications of such nontrivial worldline winding, which bring additional, potentially quasi-long-range contributions to the entanglement entropy.
arXiv Detail & Related papers (2023-07-03T18:00:02Z) - Persistent non-Gaussian correlations in out-of-equilibrium Rydberg atom arrays [0.0]
We present a mechanism by which an initial state of a Rydberg atom array can retain persistent non-Gaussian correlations following a global quench.
These long-lived non-Gaussian states may have practical applications as quantum memories or stable resources for quantum-information protocols.
arXiv Detail & Related papers (2023-06-21T12:07:45Z) - Non-equilibrium quantum probing through linear response [41.94295877935867]
We study the system's response to unitary perturbations, as well as non-unitary perturbations, affecting the properties of the environment.
We show that linear response, combined with a quantum probing approach, can effectively provide valuable quantitative information about the perturbation and characteristics of the environment.
arXiv Detail & Related papers (2023-06-14T13:31:23Z) - Continuous phase transition induced by non-Hermiticity in the quantum
contact process model [44.58985907089892]
How the property of quantum many-body system especially the phase transition will be affected by the non-hermiticity remains unclear.
We show that there is a continuous phase transition induced by the non-hermiticity in QCP.
We observe that the order parameter and susceptibility display infinitely even for finite size system, since non-hermiticity endows universality many-body system with different singular behaviour from classical phase transition.
arXiv Detail & Related papers (2022-09-22T01:11:28Z) - Relaxation to a Parity-Time Symmetric Generalized Gibbs Ensemble after a
Quantum Quench in a Driven-Dissipative Kitaev Chain [0.0]
We show that relaxation of driven-dissipative systems after a quantum quench can be determined by a maximum entropy ensemble.
We show that these results apply to broad classes of noninteracting fermionic models.
arXiv Detail & Related papers (2022-03-28T08:59:58Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.