Performance metrics for the continuous distribution of entanglement in
multi-user quantum networks
- URL: http://arxiv.org/abs/2307.01406v2
- Date: Wed, 31 Jan 2024 12:31:16 GMT
- Title: Performance metrics for the continuous distribution of entanglement in
multi-user quantum networks
- Authors: \'Alvaro G. I\~nesta and Stephanie Wehner
- Abstract summary: Entangled states shared among distant nodes are frequently used in quantum network applications.
In this paper, we focus on the steady-state performance analysis of protocols for continuous distribution of entanglement.
One of the main conclusions from our analysis is that the entanglement consumption rate has a greater impact on the protocol performance than the fidelity requirements.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Entangled states shared among distant nodes are frequently used in quantum
network applications. When quantum resources are abundant, entangled states can
be continuously distributed across the network, allowing nodes to consume them
whenever necessary. This continuous distribution of entanglement enables
quantum network applications to operate continuously while being regularly
supplied with entangled states. Here, we focus on the steady-state performance
analysis of protocols for continuous distribution of entanglement. We propose
the virtual neighborhood size and the virtual node degree as performance
metrics. We utilize the concept of Pareto optimality to formulate a
multi-objective optimization problem to maximize the performance. As an
example, we solve the problem for a quantum network with a tree topology. One
of the main conclusions from our analysis is that the entanglement consumption
rate has a greater impact on the protocol performance than the fidelity
requirements. The metrics that we establish in this manuscript can be utilized
to assess the feasibility of entanglement distribution protocols for
large-scale quantum networks.
Related papers
- Optimized Distribution of Entanglement Graph States in Quantum Networks [2.934854825488435]
In quantum networks, multipartite entangled states distributed over the network help implement and support many quantum network applications.
Our work focuses on developing optimal techniques to generate and distribute multipartite entanglement states efficiently.
arXiv Detail & Related papers (2024-04-30T22:00:25Z) - Quantum-enhanced metrology with network states [8.515162179098382]
We prove a general bound that limits the performance of using quantum network states to estimate a global parameter.
Our work establishes both the limitation and the possibility of quantum metrology within quantum networks.
arXiv Detail & Related papers (2023-07-15T09:46:35Z) - The Quantum Internet: an Efficient Stabilizer states Distribution Scheme [0.0]
Quantum networks constitute a major part of quantum technologies.
They will boost quantum computing drastically by providing a scalable modular architecture of quantum chips.
They will provide the backbone of the future quantum internet, allowing for high margins of security.
arXiv Detail & Related papers (2023-05-04T08:53:38Z) - Multi-User Entanglement Distribution in Quantum Networks Using Multipath
Routing [55.2480439325792]
We propose three protocols that increase the entanglement rate of multi-user applications by leveraging multipath routing.
The protocols are evaluated on quantum networks with NISQ constraints, including limited quantum memories and probabilistic entanglement generation.
arXiv Detail & Related papers (2023-03-06T18:06:00Z) - FENDI: Toward High-Fidelity Entanglement Distribution in the Quantum
Internet [12.103184144665637]
A quantum network distributes quantum entanglements between remote nodes, and is key to many applications in secure communication, quantum sensing and distributed quantum computing.
This paper explores the fundamental trade-off between the throughput and the quality of entanglement distribution in a multi-hop quantum repeater network.
arXiv Detail & Related papers (2023-01-19T19:05:02Z) - Adaptive, Continuous Entanglement Generation for Quantum Networks [59.600944425468676]
Quantum networks rely on entanglement between qubits at distant nodes to transmit information.
We present an adaptive scheme that uses information from previous requests to better guide the choice of randomly generated quantum links.
We also explore quantum memory allocation scenarios, where a difference in latency performance implies the necessity of optimal allocation of resources for quantum networks.
arXiv Detail & Related papers (2022-12-17T05:40:09Z) - Quantum Network Utility Maximization [2.525518484388622]
We extend the notion of Network Utility Maximization (NUM) to quantum networks.
We propose three quantum utility functions -- each incorporating a different entanglement measure.
These ideas provide ideas regarding the suitability of quantum network utility definitions to different quantum applications.
arXiv Detail & Related papers (2022-10-14T22:02:02Z) - A scheme for multipartite entanglement distribution via separable
carriers [68.8204255655161]
We develop a strategy for entanglement distribution via separable carriers that can be applied to any number of network nodes.
We show that our protocol results in multipartite entanglement, while the carrier mediating the process is always in a separable state with respect to the network.
arXiv Detail & Related papers (2022-06-20T10:50:45Z) - Cluster-Promoting Quantization with Bit-Drop for Minimizing Network
Quantization Loss [61.26793005355441]
Cluster-Promoting Quantization (CPQ) finds the optimal quantization grids for neural networks.
DropBits is a new bit-drop technique that revises the standard dropout regularization to randomly drop bits instead of neurons.
We experimentally validate our method on various benchmark datasets and network architectures.
arXiv Detail & Related papers (2021-09-05T15:15:07Z) - Entanglement Rate Optimization in Heterogeneous Quantum Communication
Networks [79.8886946157912]
Quantum communication networks are emerging as a promising technology that could constitute a key building block in future communication networks in the 6G era and beyond.
Recent advances led to the deployment of small- and large-scale quantum communication networks with real quantum hardware.
In quantum networks, entanglement is a key resource that allows for data transmission between different nodes.
arXiv Detail & Related papers (2021-05-30T11:34:23Z) - Purification and Entanglement Routing on Quantum Networks [55.41644538483948]
A quantum network equipped with imperfect channel fidelities and limited memory storage time can distribute entanglement between users.
We introduce effectives enabling fast path-finding algorithms for maximizing entanglement shared between two nodes on a quantum network.
arXiv Detail & Related papers (2020-11-23T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.